
IMPLEMENTING	AN	ANALYTICAL	SOLUTION	FOR	POROUS	DRAINAGE	ON	A	
SLOPING	BED	WITH	UNIFORM	RAINFALL	IN	MS	EXCEL	USING	VBA	

MACRO	PROGRAMMING	
	
BY		
	

MACEY	H.	TAYLOR	
	

FOR	
	

CE4000-020	
SPRING	2016	

	 	

	 2	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 3	

TABLE	OF	CONTENTS	
TABLE	OF	CONTENTS	...	3	

INTRODUCTION	..	4	
PROBLEM	STATEMENT	..	4	
SKETCH	...	4	
KNOWN	..	6	
UNKNOWN	...	6	
ANALYTICAL	SOLUTIONS	...	6	

VBA	CODING	METHODOLOGY	...	6	
ERROR	HANDLING	..	8	
NEWTON’S	METHOD	..	9	
EQUATION	SELECTION	...	9	
METHODS	TESTING	...	12	
CASE	1	...	12	
CASE	2	...	18	
CASE	3	...	19	

SPREADSHEET	INTERFACE	..	23	
REFERENCES	..	24	

	 	

	 4	

INTRODUCTION	
Childs	(1971)	recognized	that	an	assumption	had	been	incorrectly	made	for	
determinations	of	groundwater	flow	supplied	by	uniform	rainfall	over	a	sloping	bed	
to	transverse	ditch	drains.	Werner	(1957)	and	Schmid	and	Luthin	(1964)	believed	
that	equipotential	lines	are	vertical	to	the	sloping	bed,	which	they	are	actually	
perpendicular.	These	equipotential	lines	can	be	thought	of	as	contour	lines	for	the	
water	table.	So,	this	incorrect	theory	caused	problems	in	previously	derived	
equations.		Childs	(1971)	modified	these	studies	and	presented	a	differential	
equation	for	the	determination	of	groundwater	flow,	assuming	streamlines	were	
parallel	to	the	bed	slope.	Childs	(1971)	alleged	that	no	analytical	solutions	could	be	
determined	because	how	specific	the	cases	for	this	theory	were.	Towner	(1975)	
discovered	that	by	integrating	this	differential	equation,	analytical	solutions	could	
be	determined	and	these	solutions	were	very	similar	to	those	of	Schmid	and	Lutin	
(1964).		Three	analytical	solutions	were	formed	under	three	cases	that	were	
dependent	upon	bed	slope,	rainfall	rate	and	hydraulic	conductivity.	Using	these	
solutions	for	each	case,	the	greatest	vertical	height	to	the	water	table	mound,	the	
location	to	this	height	and	to	the	watershed,	and	the	shape	of	the	water	table	mound	
could	be	determined	for	a	horizontal	aquifer	system.	Using	the	integrated	analytical	
solutions,	VBA	code	and	Newton’s	method,	the	vertical	distance	of	the	water	table	
above	the	sloping	bed,	z,	was	estimated	from	a	supplied	horizontal	distance	
measured	from	the	upper	drain,	x.		

PROBLEM	STATEMENT	
For	Towner	and	the	research	within	this	paper,	the	drainage	of	groundwater	in	
equilibrium	with	uniform	rainfall	flowing	down	a	sloping	bed	via	equidistant,	
parallel	ditch	drains	routing	down	the	bed	slope	and	into	the	impermeable	bed	
posed	as	an	issue	(1975).		The	vertical	distance	of	the	water	table	above	the	sloping	
bed	needed	to	be	estimated	given	a	horizontal	distance	measured	from	the	upper	
drain.	From	these	distances,	the	shape	and	location	of	the	water	table	could	be	
determined	for	a	horizontal	aquifer	system.		

SKETCH	
Figure	 1	 is	 a	 representation	 of	 a	 typical	 unconfined	 aquifer	 system	with	 uniform	
rainfall	infiltrating	groundwater	and	draining	over	a	bed	slope.	The	bed	slope,	which	
is	 the	 very	 bottom	 layer	 of	 Figure	 1	 beneath	 the	 groundwater,	 will	 vary	 and	 is	
dependent	upon	 the	bed	slope,	a.	 Figure	2	 is	 a	 cross	 section	view	of	groundwater	
flowing	 between	 drains	 on	 a	 sloping	 bed.	 This	 figure	 helps	 better	 visualize	 a	
horizontal	aquifer	system	and	recognize	parameters	of	the	analytical	solutions.	
	

	 5	

	
FIGURE	1.	UNCONFINED	AQUIFER	SYSTEM	

	

	
FIGURE	2.	CROSS-SECTION	OF	THE	GROUNDWATER	BETWEEN	DRAINS	ON	A	SLOPING	BED	

	 6	

KNOWN	
The	known	parameters,	excluding	z,	for	the	aquifer	system	are	shown	in	Figure	2.	P	
represents	the	uniform	rainfall	rate.	H	represents	the	highest	point	or	mound	on	the	
water	 table	 and	 is	 the	maximum	 value	 of	 z	 for	 said	 case.	 The	 horizontal	 distance	
measured	from	the	upper	drain	is	represented	by	x.	The	bed	slope	is	given	by	a	and	
the	hydraulic	conductivity	is	given	by	k.	ℒ represents	the	horizontal	distance	to	the	
watershed.	Using	these	parameters,	the	integrated	analytical	solutions	for	each	case	
could	be	put	into	x	as	a	function	of	z	and	z	could	be	determined	for	any	given	value	
of	x.		

UNKNOWN	
The	main	goal	of	this	research	was	to	manipulate	each	solution	for	each	case	using	a	
supplied	 value	 of	 x	 to	 determine	 the	 associated	 value	 of	 z.	 Newton’s	method	was	
used	in	order	to	estimate	the	value	of	z	as	x	approached	zero.	

ANALYTICAL	SOLUTIONS	
As	previously	stated,	it	was	believed	that	no	analytical	solutions	could	be	
determined,	but	this	was	incorrect.	Towner	(1975)	calculated	analytical	solutions	by	
integrating	differential	equations	derived	by	Childs	(1971),	which	this	research	
stemmed	from	various	ideas	presented	from	previous	researchers.		These	solutions	
determined	from	integration	were	for	the	case	of	ditches	and	uniform	rainfall.	
Towner	developed	three	solutions	for	three	different	cases,	which	were	dependent	
upon	a	relationship	between	the	known	values.	Using	these	solutions,	the	greatest	
vertical	height	to	the	water	table	mound,	the	location	to	this	height	and	to	the	
watershed,	and	the	shape	of	the	water	table	mound	could	all	be	determined.		
Furthermore,	by	setting	the	analytical	solutions	for	each	case	to	zero,		x	became	a	
function	of	z	and	the	critical	points	were	found	that	determined	a	corresponding	z.	

VBA	CODING	METHODOLOGY	
A	module	is	used	in	developer	within	Microsoft	Word	to	code	functions.	Within	
these	functions,	there	are	parameter	names	that	define	variables.	Table	1	shows	the	
variables	and	their	parameter	names	used	and	seen	throughout	this	VBA	code.	The	
description	explains	what	the	specific	parameter	is	used	for	or	relates	to.	
	
	
	
	
	
	
	
	
	
	

	 7	

TABLE	1.	VBA	PARAMETERS	AND	FUNCTION	NAMES	USED	FOR	TOWNER	VARIABLES	AND	DESCRIPTIONS	OF	EACH	

Description	 Variable		 VBA	Parameter	
Bed	slope	 a	 a	
Rainfall	rate	 p	 p	
Hydraulic	conductivity	 k	 k	
Horizontal	distance	from	upper	drain	 x		 x	
Vertical	distance	of	water	table	above	sloping	bed	 z	 z	
Horizontal	distance	between	the	drains	 L	 L	
Horizontal	distance	to	the	watershed	 ℒ	 curvyL	
Value	differentiating	between	case	1,	2,	or	3	 A	 capA	
Relationship	between	x	and	ℒ 	 v	 vValue	
Defining	value	for	all	cases	 W	 capW	
Defining	value	for	case	1	 m	 mValue	
Defining	value	for	case	1	 u0	 uSub0	
Defining	value	for	case	1	 uH	 uSubH	
Height	of	the	mound	of	water	for	case	1	 H1	 capH1	
Defining	value	for	case	1	 u	 uValue	
Horizontal	distance	to	mound	for	case	1	 X1	 capX1	
Height	of	the	mound	of	water	for	case	2	 H2	 capH2	
Horizontal	distance	to	mound	for	case	2	 X2	 capX2	
Defining	value	for	case	3	 W1	 capW1	
Defining	value	for	case	3	 W2	 capW2	
Height	of	the	mound	of	water	for	case	3	 H3	 capH3	
Horizontal	distance	to	mound	for	Case	3	 X3	 capX3	
Defining	value	for	case	3	 C4	 capC4	
Solution	function	for	case	1	 	 Case1	
Manipulation	of	solution	function	to	estimate	z	given	x	 NewtonCase1	
Solution	function	for	case	2	 	 Case2	
Manipulation	of	solution	function	to	estimate	z	given	x	 NewtonCase2	
Solution	function	for	case	3	 	 Case3	
Manipulation	of	solution	function	to	estimate	z	given	x	 NewtonCase3	
Number	of	guesses	for	Newton’s	method	 HowMany	
Deviation	from	original	guess	for	Newton’s	method	 stepsize	
How	close	the	value	is	to	zero	for	Newton’s	method	 tolerance	
																																																																																																																																																																	
In	Table	2,	there	are	a	few	basic	VBA	symbols	used	for	certain	operations	in	
functions	and	code.	
	
	

	 8	

TABLE	2.	HELPFUL	VBA	OPERATIONS	AND	SYMBOLS	

Operation	 Symbol	
Greater	than	 >	
Less	than	 <	
Greater	than	or	equal	to	 >=	
Less	than	or	 <=	
Equal	to	 =	
Not	equal	to	 <>	
Natural	log,	ln	 Log	
Defines	a	comment	describing	code/function	 ‘comment	
Defines	a	string	value	is	being	used	 “”	
Defines	function	and/or	parameter	data	type	 As	Double	(or	String)	
	
The	operational	math	terms	like	“greater	than”	or	“equal	to”	are	very	helpful	to	
know	for	IF-THEN-ELSE	statements.	Using	the	symbols	can	help	simplify	code	that	
could	be	in	multiple	functions	and	make	them	into	single	functions.		The	natural	log	
was	used	quite	often	within	this	code	and	needed	to	be	defined	so	there	would	be	no	
confusion	when	calling	the	natural	log	function	in	the	module.	Comments	can	be	
helpful	and	describe	what	a	certain	function	is	doing	or	just	clear	something	up	
within	the	code	that	is	not	obvious.	A	comment	should	at	least	be	used	before	each	
function	and	more	than	one	comment	can	be	used.	Where	a	comment	is	located	in	
the	function	does	not	affect	anything.	Finally,	there	are	two	data	types	in	code,	
“string”	and	“double”.	Double	defines	a	number	and	using	the	identifier	character	
“#”	after	a	number	forces	it	to	become	a	double	data	type.	String	defines	text	and	
words.	Functions	and	parameters	can	be	forced	as	a	number	or	text	value.	

ERROR	HANDLING	
Error	handling	has	been	done	through	out	the	computation	of	each	function.	Some	
of	these	error	handlers	used	notified	the	user	when	null	values	were	put	in,	a	
parameter	was	zero	that	could	not	be,	or	when	a	number	for	a	certain	variable	
needs	to	be	changed.	Also,	basic	error	handlers	have	been	put	used	in	case	of	
general	errors	arising.	When	these	errors	happen,	the	error	handlers	give	the	user	
an	error	number	and	description	to	better	diagnose	the	issue.	The	algorithm	for	an	
error	handler	returning	an	error	number	and	description	is	as	follows:	
	

1. Put	“On	Error“	statement	or	IF	statement	for	an	error	after	function	
parameters	and	name	are	defined	and	before	the	function	equation	or	IF-
THEN-ELSE	statements.	

On Error GoTo ErrorHandlerParameterIssue
	

OR

If parameter..Then GoTo ErrorHandlerParameterIssue
	

2. “Exit	Function”	and	put	in	error	handler(s)	name	before	“End	Function”	

	 9	

3. Type	in	message	wanted	to	be	returned	on	error	and	if	necessary,	make	the	
error	handler	return	number	and	description.	Also,	a	certain	string	or	double	
can	be	set	to	return	in	the	spreadsheet	for	the	function	value	on	error.	

Exit Function

ErrorHandlerParameterIssue:
MsgBox “message” & vbCrLf & “Error” & Err.Number &

“:” & Err.Description
FunctionName = “string” or Number
Exit Function

End Function

	 	 	 	

NEWTON’S	METHOD	
Netwon’s	method	was	used	to	estimate	a	value	of	z	from	a	supplied	x	value.	By	
finding	the	zeroes	or	critical	points	of	the	analytical	solutions	for	each	case,	a	value	
of	z	was	estimated	from	a	specific	x	value.	Each	solution	was	set	to	zero	by	moving	
all	terms	in	the	function	to	one	side.		A	loop	function	was	used	to	guess	values	of	z.	
This	was	done	by	finding	the	slope	at	a	certain	point	of	the	function,	which	gave	a	
corresponding	x	and	z	value.	The	loop	continued	until	the	value	of	x	was	
approximately	zero,	hence,	giving	the	appropriate	value	of	z.	The	equation	defining	
Newton’s	method	in	terms	of	this	case	of	estimating	z	is	as	follows:		

𝑧!!! = 𝑧! −
𝑓(𝑧!)
𝑓′(𝑧!)

	

In	this	equation,	zn	is	the	first	initial	guess	the	loop	starts	at.	The	function	or	
analytical	solutions	with	the	estimated	z	value	is	represented	by	f(zn)	and	the	
derivative	of	that	function,	which	represents	the	slope	of	the	function	at	that	point,	
is	represented	by	f’(zn).		To	estimate	with	Newton’s	method	and	use	a	loop,	a	step	
size	was	given	and	this	was	the	deviation	from	the	original	guess	each	additional	
guess	would	follow	until	it	reached	a	critical	point.	Also,	a	number	of	guesses	were	
given	for	the	count	used	in	the	loop,	along	with	a	tolerance	that	governed	if	the	
function	value	was	close	enough	to	zero.	The	derivative	of	the	function	in	this	case	
was	found	by	the	following	equation:	

𝑓! 𝑧! =
𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠, 𝑧! + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 − 𝑓(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠, 𝑧!)

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 	

Here,	the	constants	are	values	like	A,	a,	p,	k	and	so	on.	These	values	do	not	change	
based	off	of	the	given	x	value	and	therefore,	are	considered	constants.	Using	these	
functions	and	tolerance	in	a	loop,	allowed	for	the	approximation	of	z.	

EQUATION	SELECTION	
Towner	(1975)	uses	and	manipulates	Childs’	notation	of	a	revised	differential	
equation	correction	Werner	(1975)	and	Schmid	and	Luthin	(1964)	to	come	up	with	
the	following	relationship.		

	 10	

𝑊

𝑊! − 𝐴𝑊 + (𝑝𝑘)
 𝑑𝑊 = −

𝑑𝑣
𝑣 	

This	relationship	was	integrated	from	the	following	function,	which	is	Equation	1	in	
Towner	(1975):	

𝑑𝑧
𝑑𝑥 =

𝑎𝑘𝑧 − 𝑝(𝑥 − ℒ)(1+ 𝑎!)
𝑘𝑧 − 𝑝 𝑥 − ℒ a 	

	
In	this	integration,	v	and	W	are	defined	where:	

𝜈 = 𝑥 − ℒ 	
	

𝑊 =
𝑧
𝜈 − 𝑎(

𝑝
𝑘)	

	
The	following	VBA	script	in	Figures	3	and	4	represents	the	two	functions	calculating	
W	and	v.	
	

	
FIGURE	3.	FUNCTION	USED	TO	DETERMINE	W	

	

	
FIGURE	4.	FUNCTION	USED	TO	DETERMINE	V	

Towner	(1975)	reduces	the	hydraulics	to	three	cases	depending	on	the	value	of	the	
variable	A	and	the	rainfall	rate	and	hydraulic	conductivity	within	the	groundwater	
portion.	After	integrating	Equation	1	in	Towner	(1975),	it	was	seen	that	the	

	 11	

analytical	solution	depends	on	the	relationship	between	A2	being	greater	than,	less	
than,	or	equal	to	4*(p/k).	On	page	144	of	Towner,	A	is	defined	as:	

𝐴 = 𝑎[1−
𝑝
𝑘]	

The	VBA	script	calculates	the	value	of	A	in	the	code	fragment	seen	in	Figure	5.	
	

	
FIGURE	5.		FUNCTION	USED	TO	DETERMINE	VALUE	OF	A	

The	VBA	script	makes	the	selection	of	the	equation,	or	case,	to	use	using	the	code	
fragment	shown	in	Figure	2.	Case	1	was	defined	by	A2	<	4(p/k).	Case	2	was	defined	
by	A2	=	4(p/k).	Case	3	was	defined	by	A2	>	4(p/k).	

	
	
	

	

	

	

	

	

	

	

FIGURE	6.	SELECTING	WHICH	EQUATION	(CASE)	TO	USE	BASED	OFF	OF	CALCULATED	A	VALUE	

In	order	to	estimate	a	value	of	z	for	all	three	cases,	values	for	a,	p,	and	k	that	fell	
below	each	case	were	determined.	Values	could	easily	be	found	for	Cases	1	and	3,	
but	Case	2	was	trickier.	Using	algebra,	it	was	found	that	Case	2	solutions	governed	

	 12	

when	a	was	equal	to	-2.4,	p	was	equal	to	9,	and	k	was	equal	to	4.	Furthermore,	
Figure	6	shows	a	good	example	of	an	IF-THEN-ELSE	statement	and	the	algorithm	is	
as	follows:	

1. Code	If	statement	after	function	name	and	parameters	are	defined	and	after	
error	handlers.	Operational	math	terms	can	be	used	to	compare	numbers	or	
parameters	or	strings	can	be	used	to	define	the	if	statement.		

If Parameter1 < (>, =, <>, <=, >=) Parameter2 Then
 Function = Double or “String”

2. Code	ElseIf	statement	if	additional	conditions	can	be	applied	
ElseIf Parameter1 > (>, =, <>, <=, >=) Parameter2 Then
 Function = Double or “String”

3. Code	Else	statement	to	define	outcome	if	no	previous	conditions	apply	and	
end	function	with	End	If	statement.	To	ensure	no	error,	input	Exit	Function		
statement	after	End	If.	

Else
Function = Double or “String”

End If
Exit Function

End Function
	

METHODS	TESTING	

CASE	1		
Throughout	each	case,	different	variables	had	to	found	to	solve	the	analytical	
solution.	For	Case	1,	functions	for	m,	u,	and	u0	had	to	be	written	to	determine	the	
solutions.	The	value	of	m	was	calculated	using	the	code	fragment	in	Figure	7.	Using	
an	IF-THEN-ELSE	statement,	a	string	of	“N/A”	will	be	returned	when	the	case	does	
not	fall	under	Case	1.	Throughout	the	code	fragments,	IF-THEN-ELSE	statements	
were	used	to	define	a	function	value	as	“N/A”	when	the	case	was	not	met.	This	
allowed	for	a	cleaner	looking	spreadsheet	interface	and	ensured	no	errors	would	
return	in	a	cell	if	the	function	was	not	applicable	to	the	specific	case.	

	 13	

	

	
FIGURE	7.	FUNCTION	USED	TO	DETERMINE	M	FOR	CASE	1	

	
Figure	8	shows	Equation	4	from	Towner	(1975)	.	
	

	
FIGURE	8.	EQUATION	4	IN	TOWNER	USED	TO	DETERMINE	THE	MOUND,	H,	FOR	CASE	1	

	
The	first	function	in	this	figure	represents	the	function	to	determine	the	maximum	
value	of	z	for	Case	1.	To	determine	the	point	of	the	mound,	H,	a	function	had	to	be	
made	for	uH.	The	entire	right	hand	side	of	Towner	Equation	4	is	comprised	of	known	
values;	that	is	it	is	a	constant.		So,	in	the	code,	the	right	hand	side	is	evaluated	and	
then	the	following	algebraic	and	logarithmic	transformations	are	used	to	compute	a	
value	for	H:	
	

ln (
𝐻

𝐿 − ℒ)
! = constant	

	

ln (
𝐻

𝐿 − ℒ) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
!
!	

	 14	

	
	

𝐻
𝐿 − ℒ = exp 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

!
! 	

	

H = (L− ℒ)exp 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
!
! 	

These	operations	are	shown	in	the	code	fragment	in	Figure	11.	
	
The	values	u0	and	uH	were	computed	using	the	code	fragment	in	Figures	9	and	10.	u0	
and	uH	returned	a	value	of	N/A	when	the	case	did	not	fall	under	Case1.		
	

	
FIGURE	9.	FUNCTION	USED	TO	DETERMINE	U0	TO	DEFINE	MAXIMUM	H	FOR	CASE	1	

	

	 15	

	
FIGURE	10.	FUNCTION	USED	TO	DETERMINE	UH	TO	DEFINE	MAXIMUM	H	FOR	CASE	1	

	
	

	
FIGURE	11.	FUNCTION	USED	TO	DETERMINE	MAXIMUM	H	FOR	CASE	3	

	
By	putting	!"

!"
= 0,	the	formula	for	x,	the	distance	which	the	maximum	H	occurs,	for	

Case	1	can	be	obtained.	The	maximum	at	which	the	mound	occurs	on	the	sloping	
bed	allows	for	the	shape	of	the	mound	to	be	better	understood	and	this	program.	
Equation	7	in	Towner	seen	below	was	used	to	find	the	value	of	x	(1975):	

𝑋 = ℒ +
𝑘
𝑝 ∗

𝑎
1+ 𝑎! ∗ 𝐻	

	
Figure	12	shows	the	code	fragment	for	this	function	and	Figure	12	shows	the	code	
fragment	for	the	determination	of	u.	

	 16	

	

	
FIGURE	12.	FUNCTION	USED	TO	DETERMINE	X	AT	MAXIMUM	H	FOR	CASE	1	

The	value	of	u	was	calculated	in	order	for	a	relationship	of	ℒ/𝐿	to	be	found.		

	
FIGURE	13.	FUNCTION	USED	TO	DETERMINE	THE	VALUE	OF	U	

Figure	14	represents	the	analytical	function	for	Case	1,	which	is	given	by	Equation	3	
in	Towner	(1975).	All	variables	were	moved	to	one	side	of	the	equation	in	order	to	
be	equal	to	zero.	Thus	allowing	this	function	to	be	used	for	estimation	with	
Newton’s	Method.	
	

	
FIGURE	14.	FUNCTION	OF	EQUATION	3	IN	TOWNER	USED	TO	GET	X	AS	A	FUNCTION	OF	Z	FOR	CASE	1	

Figure	15	shows	the	Newton’s	estimation	of	z	for	Case	1	using	the	function	shown	in	
Figure	14.	This	code	fragment	represents	a	loop	function	and	also	calls	the	Case1	

	 17	

function.	It	must	be	recognized	that	when	calling	a	function,	the	function	cannot	be	
listed	as	a	parameter	of	the	function.	
	

	
FIGURE	15.	LOOP	FUNCTION	ESTIMATING	Z	WITH	NEWTON’S	METHOD	FOR	CASE	1	USING	A	SUPPLIED	X	VALUE	

	
	
In	order	to	do	a	loop	function,	and	in	this	case	Newton’s	method	estimation,	the	
algorithm	is	as	follows:	

1. Write	the	function	name,	which	ultimately	will	return	the	estimated	value	of	
z,	and	the	parameters	needed	for	the	estimation	and	for	the	analytical	
function.		

Function EstimationValue(stepsize, tolerance, HowMany,
Constants, Guess)

2. Code	the	Count	statement	and	specify	test1.	Make	sure	when	calling	function	
that	parameters	are	in	same	order	from	original	function.	

For Count = 1 to HowMany
test1 = Function(Constants, Guess)

3. Create	an	IF	statement	that	checks	if	the	absolute	value	of	the	current	guess	

at	the	specified	count	is	smaller	than	the	tolerance.	
If (Abs(test1) < tolerance) Then

EstimationValue = Guess
Exit Function

End If

4. If	the	current	guess	is	not	smaller	than	the	guess,	Newton’s	method	
equations	are	used.	The	derivative	first	needs	to	be	found	for	the	function	
and	then	the	new	guess	is	found.	

dfdxfd = ((Function(Constants, Guess+stepsize)-
(Function(Constants, Guess)))/stepsize

Guess = Guess – (Function(Constants, Guess)/dfdxfd)
	
	

5. Finally,	using	the	new	guess,	the	function	goes	to	the	next	count,	loops	back	
to	the	beginning	and	checks	if	the	new	guess	is	below	the	tolerance.	

	 18	

Next Count
EstimationValue = Guess
End If

 Exit Function
 End Function
	

CASE	2	
If	the	case	falls	into	Case	2,	a	new	H	had	to	be	manipulated	and	calculated	for.	
Equation	8	on	page	145	of	Towner	(1975)	needed	to	be	solved	for	H.	To	do	this,	
both	sides	of	the	equation	were	multiplied	by	L.	You	can	see	this	manipulation	for	
the	H	for	case	2	below:	

𝐻
𝐿 = − 1+ 𝑎! ∗

𝑝
𝑘 ∗

𝑎𝐴 + 2
𝐴 − 2𝑎 ∗ exp (

2𝐴 ∗ (1+ 𝑎!)
𝐴 − 2𝑎 ∗ (𝐴𝑎 + 2))	

	

𝐻 = −𝐿 ∗ 1+ 𝑎! ∗
𝑝
𝑘 ∗

𝑎𝐴 + 2
𝐴 − 2𝑎 ∗ exp (

2𝐴 ∗ (1+ 𝑎!)
𝐴 − 2𝑎 ∗ (𝐴𝑎 + 2))	

	
Now,	with	height	of	the	mound	found	for	Case	2,	the	location	x	can	be	found.	The	
equation	is	the	same	as	before	for	Case	1	but	instead	ℒ	is	equal	to	zero.	This	results	
in	the	equation	following:	

𝑋 =
𝑘
𝑝 ∗

𝑎
1+ 𝑎! ∗ 𝐻	

	
The	following	VBA	scripts	in	Figure	16	and	17	represent	the	functions	to	find	H	and	
x	for	Case	2.	
	

FIGURE	16.	FUNCTION	USED	TO	DETERMINE	MAXIMUM	H	FOR	CASE	2	

	
FIGURE	17.	FUNCTION	USED	TO	DETERMINE	X	AT	MAXIMUM	H	FOR	CASE	2	

	 19	

Figure	18	shows	the	analytical	function	for	Case	2	represented	by	Equation	9	of	
Towner	(1975).	Figure	19	shows	the	Newton	estimation	of	z	for	Case	2.	
	

	
FIGURE	18.	FUNCTION	OF	EQUATION	9	IN	TOWNER	USED	TO	GET	X	AS	A	FUNCTION	OF	Z	FOR	CASE	2	

	
FIGURE	19.	LOOP	FUNCTION	ESTIMATING	Z	WITH	NEWTON’S	METHOD	FOR	CASE	2	USING	A	SUPPLIED	X	VALUE	

	

CASE	3	
The	final	case	is	where	A2	>	4(p/k).		First,	the	values	of	W1	and	W2	were	needed	in	
order	to	complete	the	relationship	of	Equation	11	in	Towner	(1975):	
	

𝑊!

𝑊! −𝑊!
∗ ln 𝑧 − 𝑥 𝑊! + 𝑎

𝑝
𝑘

!

−
𝑊!

𝑊! −𝑊!
∗ ln 𝑧 − 𝑥 𝑊! + 𝑎

𝑝
𝑘

!

= 𝐶!	

	
Where,	

𝑊! =
𝐴
2 +

𝐴!

4 −
𝑝
𝑘

!/!

	

𝑊! =
𝐴
2 −

𝐴!

4 −
𝑝
𝑘

!/!

	

𝐶! =
𝑊!

𝑊! −𝑊!
ln 𝐻

1
1 + 𝑎!

−𝑊!
𝑎

1 + 𝑎!
𝑘
𝑝

!

−
𝑊!

𝑊! −𝑊!
ln 𝐻

1
1 + 𝑎!

−𝑊!
𝑎

1 + 𝑎!
𝑘
𝑝

!

	

	

	 20	

The	VBA	script	of	W1	and	W2	is	seen	in	Figures	20	and	21.	

	 	
FIGURE	20.	FUNCTION	USED	TO	DETERMINE	W1	TO	DEFINE	C4	FOR	CASE	3	

	

	
FIGURE	21.	FUNCTION	USED	TO	DETERMINE	W2	TO	DEFINE	C4	FOR	CASE	3	

By	manipulating	this	C4	relationship	with	W1	and	W2	and	putting	z	equal	to	zero	at	x	
equal	to	L,	a	relationship	for	H	for	case	3	was	determined.	Below	the	manipulation	
for	H	for	Case	3	can	be	seen.		

 𝐻 = 𝐿 ∗

1
1+ 𝑎! −𝑊!

𝑎
1+ 𝑎!

𝑘
𝑝

𝑎 𝑝
𝑘 +𝑊!

!! !!!!!

∗

1
1+ 𝑎! −𝑊!

𝑎
1+ 𝑎!

𝑘
𝑝

𝑎 𝑝
𝑘 +𝑊!

!! !!!!!
!!

	

	
Again,	ℒ	is	equal	to	zero	for	Case	3	as	it	was	for	Case	2.	So	the	same	equation	used	to	
find	x	in	case	2	was	used.	Figures	22	and	23	shows	the	code	fragment	used	to	
determine	H	and	x	for	Case	3.	

	 21	

	

	

FIGURE	22.	FUNCTION	USED	TO	DETERMINE	MAXIMUM	H	FOR	CASE	3	

	

	
FIGURE	23.	FUNCTION	USED	TO	DETERMINE	X	AT	MAXIMUM	H	FOR	CASE	3	

	
In	order	to	use	Newton’s	method	for	the	analytical	solution	in	Case	3,	C4	needed	to	
be	determined.	Figure	24	shows	the	code	fragment	for	the	C4	function.	
	

	
FIGURE	24.	FUNCTION	USED	TO	DETERMINE	C4		

Figure	25	represents	the	analytical	function	for	Case	3	taken	from	Equation	11	in	
Towner	(1975).	Figure	26	shows	the	loop	function	estimating	z	for	Case	3	using	
Newton’s	method.	

	 22	

	
FIGURE	25.	FUNCTION	OF	EQUATION	11	IN	TOWNER	USED	TO	GET	X	AS	A	FUNCTION	OF	Z	FOR	CASE	3	

	

	
FIGURE	26.	LOOP	FUNCTION	ESTIMATING	Z	WITH	NEWTON’S	METHOD	FOR	CASE	2	USING	A	SUPPLIED	X	VALUE	

Lastly,	Figure	27	shows	the	code	fragment	used	to	clean	up	the	spreadsheet	
interface.	This	simply	made	the	original	input	box	for	z	equal	to	the	estimated	z	
value	for	whichever	case	was	governing.	
	

	
Figure	27.	Changing	z	Input	to	z	Estimated	for	Applicable	Case	
	
	
	

	 23	

SPREADSHEET	INTERFACE	
Figures	28,	29,	and	30	show	the	spreadsheet	interface	for	Case	1,	2	and	3.	In	these	
spreadsheets	the	estimated	z	values	can	be	seen.	It	should	be	noted	that	each	
function	value	is	approximately	zero,	proving	a	critical	point	was	found.	

	

FIGURE	28.	EXCEL	SPREADSHEET	SHOWING	CASE	1	Z	ESTIMATION	CORRECTLY	WORKING	

FIGURE	30.	EXCEL	SPREADSHEET	SHOWING	CASE	2	Z	ESTIMATION	CORRECTLY	WORKING	

FIGURE	29.	EXCEL	SPREADSHEET	SHOWING	CASE	3	Z	ESTIMATION	CORRECTLY	WORKING	

	 24	

REFERENCES	
Towner,	G.	D.,	Drainage	of	Groundwater	Resting	on	a	Sloping	Bed	with	Uniform	

Rainfall,	Water	Resour.	Res.,,	11.1,	144-47,	1975,	Print.	
Childs,	E.	C.,	Drainage	of	Groundwater	Resting	on	a	Sloping	Bed,	Water	Resour.	Res.,	

7(5),	1256-1263,	1971.	
Schmid,	P.,	and	J.	N.	Luthin,	The	Drainage	of	Sloping	Lands,	J.	Geophys.	Res.,	69(8),	

1525-1529,	1964.	
Werner,	P.	W.,	Some	Problems	in	Non-Artesian	Ground-Water	Flow,	Eos	Trans.	AGU,	

38(4),	511-518,	1957.	

