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Preface

This dissertation concerns distributional analysis of univariate and continuous data with
L-moment statistics using the R environment for statistical computing. The primary audi-
ence are practitioners (engineers and scientists) involved in magnitude and frequency
analyses. These practitioners might not necessarily consider themselves as statisticians or
be extensively educated as such, yet they possess a basic or working knowledge of statis-
tics and have a need to conduct distributional analysis in a computational context that
involves the development of empirical fits of probability distributions. It is anticipated
that these practitioners are responsible for, or have an interest in, the analysis of data hav-
ing large range, variation, skewness, or large or small outliers. These data otherwise have
long or heavy tails—that is, these data are considerably non-Normal.

As shown herein, L-moment statistics are useful tools for addressing practical problems
involving such data. Intended readers are expected to have some statistical education or
post-graduate training, but the topic of L-moment statistics very likely is new. Therefore,
this dissertation fills a gap in the applied literature and bridges a general gap between
statistics and the applied disciplines of science, engineering, finance, and medicine.

Hundreds of examples of R code and ancillary discussion are provided herein and are
intended to provide basic functional details of distributional analysis such as computation
of statistics, selection of distributions, and distribution fit. The examples also show general
use of L-moment-related functions and procedures available in R.

Through the code examples, demonstrations of L-moment statistics in the context
of applied circumstances are made, but background statistics, such as the well-known
product moments and lesser known probability-weighted moments, also are presented.
Demonstrations of the various properties of L-moments also are made along with com-
parisons to the product moments.
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Instead of extensive mathematical derivation, I have chosen to use R to demonstrate a
style of distributional analysis developed principally from my experiences and interests
over the years. I believe the examples should be especially accessible to readers who do
not come from a background of formal statistical education (like myself) and thus such
concepts might be new. This dissertation therefore is intended to (1) serve as a general ref-
erence about continuous univariate distributions, L-moments, and probability-weighted
moments, (2) provide supplementary text for courses in probability and univariate distri-
butions, and (3) provide a primary text for a discipline-specific courses such as hydrologic
statistics in the context of a civil, environmental, and hydrologic engineering curriculum.
Practitioners in other disciplines, however, should find the material informative.

To describe the origin of this dissertation, some historical background is needed. As
I recall, I was introduced to L-moments in Fall of 1995 by Charles Parrett (then with the
U.S. Geological Survey in Montana). At the time, I was to conduct a study (Asquith, 1998)
of the depth-duration and frequency of annual maximum values of rainfall in Texas, and
such data are considerably non-normal. Charles sent a reference to Hosking (1990) and
a then current version of the Hosking FORTRAN library (Hosking, 1996b). I acquired
detailed knowledge of L-moments during the U.S. Government shut downs in fall 1995—
I had some quiet time to work on learning something “new” (Hosking and Wallis, 1993).
During this time of disrupted schedule, I began in earnest to digest the literature on
L-moments. Although I had operational knowledge of FORTRAN from a groundwater
modeling course in graduate school (circa 1993), as I began the rainfall study, I strug-
gled at first to build my own L-moment applications. These were mostly dependent on
the FORTRAN library. Eventually I mastered the L-moment library and used it in the
ensuing years for Asquith (1998, 2001). Further, my occasional communications with
J.R.M. Hosking (IBM), J.R. Wallis (retired IBM, 1996; Yale University, 1996–2010), S. Rocky
Durrans (University of Alabama), Mel Schaefer (MGS Engineering Consultants, Inc.),
Jurate Landwehr (USGS), and a few others whose names have now slipped my mind
(or whose business cards I have lost), were extremely helpful. The L-moment community
was (and is) indeed generous.

My first Ph.D. in geosciences (Asquith, 2003) involved the use of L-moments and during
the course of that research I had a growing requirement for a suite of tools to support
inquires into the L-moments of natural phenomena. I began thinking about a larger system
of functions than those then available in the Hosking FORTRAN library. Because of its
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marvelous richness relative to FORTRAN, my thoughts during this time were to write an
L-moment package (module) for the Perl programming language.

In spring 2004, while delaying before a trip to the airport for a return to Austin from
a visit to Texas Tech University in Lubbock, I stopped by the University Bookstore and
stumbled onto Peter Dalgaard’s “Introductory Statistics with R.” On a whim, I purchased
the book. I do not remember whether I had even heard of R at that time. (Although by that
time, I had received training in the graphical-user interface of S-Plus.) I am a supporter of
the world of multi-platform, open-source computing—I am a fan of the Linux operating
system and the Perl programming language. It was immediately apparent that R filled a
substantial void inmy tool chest because R would run on Linux, and at the time I currently
lacked an integrated, non-spreadsheet environment for statistical analysis, which would
run on that platform.

In the subsequent year or so, I used R extensively for regression analysis and other
statistical inquiries. I had written my own high-quality typesetting, data-visualization
system in Perl named TKG2, which interfaceswithMETAPOST and adheres to the refined
graphic style of the U.S. Geological Survey, so I had only limited need in production
situations for the graphical capabilities of R. (This dissertation significantly follows the
style of Hansen (1991) with various adaptions to styles seen in books on R.) During the
ensuing years, I continued to acquire other books on R, and often these books described
add-on packages. These packages were easily found on the Internet, generally worked as
advertised, and represent an impressive feature of R—perhaps the feature. Further, books
about R had a profound influence on my thoughts about statistical analysis in a practical
(workflow, productivity) sense as well as R as a tool for statistical education. From my
perspective as an applied researcher, mentor, and occasional educator, the R environment
is a fantastic system. In time, I became dependent on several packages, and I began to
think about L-moments in R and easing away from FORTRAN-based L-moment analysis.

In June 2005, I began, inmy free time, a long process of R-package design and porting of
a large portion of theHosking FORTRAN library to nativeR. I named the package lmomco—
a play on “lmoments and company” or “lmoments and comoments.” During and after the
initial porting, which often was more or less a syntax re-expression exercise, I refined
numerous functions with increasingly more R-like syntax. I make no claim to writing
idiomatic R in general. For this dissertation, in particular, I have only used more idiomatic
constructs where I believe the context is clear. Several false starts in function nomencla-
ture (dialect) for lmomcowere made before settling on a style that is seen herein. Further,
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I continued to use free time to fill the nascent package with additional developments in
L-moment theory such as trimmed L-moments, censored L-moments , L-comoments, and
many other computation or convenience functions well beyond the Hosking FORTRAN

library.

Near the end of January 2006, I posted the lmomco package to the Comprehensive R

Archive Network for colleague review by the broader statistical community. This review
continues to the present. About that time, Juha Karvanen (the author of the Lmoments
package) and I had a several month discussion about L-moments, R, and the Generalized
Lambda distribution. The results of these discussions then governed further refinements
to the lmomco package. Following the initial release of lmomco, development continued
as numerous users from the global R community provided feedback. I am grateful for
their support of the lmomco package—the bug reports and suggested enhancements and
features are welcome andmost appreciated. In conclusion, several bugs andmany needed
enhancements were identified and added during the writing of this dissertation.

Lubbock, Texas William H. Asquith
April 18, 2011
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Chapter 1

Introduction

1.1 Distributional Analysis

Information is contained in data, data originate from measurements, and measurements
arise from intent. Whether the intent is to expand the breadth of human knowledge on
the frontiers of physics, protect citizenry from natural hazards, or to provide information
for lifetime analysis of a simple automotive switch, measurements are intentionally made
and recorded as data.

The collection of data exists within a context, and this context includes a community of
individuals and institutions with an interest in the process of data acquisition, analysis,
and interpretation, as well as the ultimate implementation of ensuing results. Distribu-
tional analysis of data is a fundamental component of that process.

For this dissertation, “distributional analysis” is a term and concept that, for generally
univariate data (single variable), encompasses the inherently iterative steps of exploratory
data analysis, summarization of samples, selection of distributions, and techniques of fit-
ting distributions to data. A general goal of distributional analysis is to provide parametric
models of one or more data sets (samples) under study. Distributional analysis, therefore,
can be used to answer questions such as “How frequently is a given value exceeded?” or
“What is the magnitude of a value for a given nonexceedance probability or cumulative
percentile?”

There is no room unfortunately to weave into the fabric of this dissertation the extensive
discussion by Klemeš (2000a,b) on distributional analysis. The discussion by Klemeš how-
ever is especially germane to distributional analysis and interpretation of non-Normal
data and a review by practitioners is highly recommended.

1
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Perhaps the one universal feature of data is that data are distributed—that is, all data
have a sample distribution. This distribution is produced by random samples from a
typically unknown parent distribution. The parent distribution often is a hypothetical
model of the population from which the data were drawn. The parent distribution can
range from the simple to the complex. Numerous probability distributions are described
by Ross (1994), Evans and others (2000), and similar texts cited later and R-oriented texts
such as Venables and others (2008) and others cited later. Many of the distributions consid-
ered by those authors are described in this dissertation. Although several are complex, the
univariate, smoothly-varying, limited-parameter distributions used herein never-the-less
represent idealized models of distribution geometry of the population.

It is possible that distributional analysis more often than not represents one of the first
forays towards interpretation and understanding of the information represented by the
data. Further, this foray likely is made before hypothesis tests, analysis of variance, linear
modeling (regression), or other analyses are performed. Distributional analysis also can
contribute to exploratory data analysis. Distributional analysis might be used for data
screening (such as for the detection of anomalous or erroneous data), or perhaps used for
the detection of changes in industrial processes (quality assurance and control purposes),
or the analysis might provide a means to an end, such as for the specification of design
heights for flood-control levees.

The context surrounding, and the community involved in, distributional analysis can
result in specific statistical approaches to become embedded by the colored lens of tradi-
tion. Perhaps the community involved with a particular data type deems that preference
should be given to a branch of statistics such as nonparametrics, or preference should be
given to a log-Normal distribution fit by themethod ofmaximum likelihood, or preference
should be given to the method of moments for fitting a Weibull distribution.

Newcomers to a field—be they freshly minted statisticians, mathematicians, scientists,
computer scientists, engineers, interdisciplinary specialists, or temporary consultants—
can be major contributors when given freedom of expression and freedom to explore
by administrators, managers, and mentors. Sometimes ignorance of the newcomer to
community-accepted nuances or a priori interpretations of data alongwith a lack of knowl-
edge of traditional techniques for distributional analysis can be a positive source of change.
Newcomers often bring new insights, approaches, and tools to statistical problems. Old-
timers can become newcomers when experienced practitioners invest in new approaches
and tools and can assimilate these into the acquired wisdom of their careers.

2



Texas Tech University,William H. Asquith, May 2011

1.2 The R Environment for Statistical Computing

A theme now established is analysis freedom and the associated use of new approaches and
tools for statistical problems. One tool that from its very inception offers analysis freedom
is the R environment for statistical computing (R Development Core Team, 2010). As
shown in this dissertation, the R environment is an exceptionally useful tool for statistical
work and, by association, distributional analysis.

Quoting (circa 2011) from the R web site http://www.r-project.org, the R envi-
ronment is

. . . a language and environment for statistical computing and graphics. It is a
GNU project [http://www.gnu.org], which is similar to the S language and
environment. The S language was developed at Bell Laboratories (formerly
AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be
considered as a different implementation of S. There are some important differ-
ences, but much code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modelling, classical
statistical tests, time-series analysis, classification, clustering, . . . ) and graphical
techniques, and is highly extensible. The S language is often the vehicle of choice
for research in statistical methodology, and R provides an open-source route to
participation in that activity.

. . .

R is available as Free Software under the terms of the Free Software Founda-
tion’s GNU General Public License in source code form. It compiles and runs on
a wide variety of UNIX platforms and similar systems (including FreeBSD and
Linux), Windows, and MacOSX.

. . .

R is an integrated suite of software facilities for data manipulation, calculation
and graphical display. It includes an effective data handling and storage facil-
ity, a suite of operators for calculations on arrays, in particular matrices, a large,
coherent, integrated collection of intermediate tools for data analysis, graphi-
cal facilities for data analysis and display either on-screen or on hardcopy, and
a well-developed, simple and effective programming language which includes
conditionals, loops, user-defined recursive functions and input and output facili-
ties.

. . .

Many users think of R as a statistics system. [The R Development Core Team]
prefer[s] to think of it of an environment within which statistical techniques are

3
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implemented. R can be extended (easily) via packages. There are about eight
packages supplied with the R distribution and many more are available through
the [Comprehensive R Archive Network (CRAN)] family of Internet sites cover-
ing a very wide range of modern statistics.

This dissertation is oriented around statistical computing using R. The choice of R is
made in part because of the open and generous global community involved in the R

project, and this dissertation is a way of paying alms to the community. The power of the
community and the freedom available to members through use of R is made manifest by
the vast armada of packages available through the Comprehensive R Archive Network
(CRAN), which is accesssible through the R web site or directly at http://www.cran.
r-project.org. The core development team of R has made custom extensions to the
language for specialized applications an economical (time wise as well as intellectually
and financially) and straightforward process (R Development Core Team, 2009).

As recently as 2002, Dalgaard (2002) reported that over one hundred R packages were
publicly available. At the time of this writing (2011), more than 2,800 packages are avail-
able that encompass innumerable topics, techniques, and tools. This phenomenal rise in R

packages or extensions to the language is evidence of the growing and global popularity of
the R environment. Through the CRAN, by brief connection to the Internet, one can bring
new or unfamiliar statistics and computational approaches to their R installations, which
might exist on a range of computing platforms. The CRAN also stores many advanced or
otherwise discipline-specific packages. Further, the CRAN contains innumerable imple-
mentations of classical and well-known statistical concepts. In either case, R packages are
readily incorporated or installed by the user. By providing a mature and multi-platform
computing environment along with a vast array of extensions and packages to solve prob-
lems, the R environment, therefore, provides the analyst with Freedom:

• Freedom for thought and reflection,

• Freedom for exploration and discovery,

• Freedom to choose computing platform, and

• Freedom to contribute to the R project.

Within this dissertation, a total of 246 examples using about 425 functions in R are pre-
sented along with considerable coupling to about 515 numbered equations. The examples
demonstrate the freedom provided by R in the broad topic of distributional analysis, in
general, and with L-moment statistics (see Section 1.3 and Chapter 6), in particular. The
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numerous examples and associated discussion, figures, and tables thus are intimately tied
to R. As context or layout requirements (or constraints) facilitated, Using R identifiers—an
example is shown below—are placed throughout this dissertation. These identifiers are
intended to demark or signify a transition from the general statistical and mathematical
narrative to a computational context using R.

Using R Using R

Assuming that R has been downloaded, installed, and can be successfully started, one
is presented with a textural interface (command line) similar to that shown in exam-
ple 1–1 . For the example, the help() function is used to display the documentation
for the mean() function. The mean() function is used to compute the arithmetic mean.
The example ends with a termination of the R process by the q() function (“quit”). The
use of the q() function in the example also demonstrates the use of named arguments and
how such arguments are passed to R functions. For example 1–1 , the named argument
save="no" tells the exiting sequence to not save the current workspace and to bypass a
manual prompt or dialog box requiring action by the user.

1–1
R version 2.12.1 (2010-12-16)
Copyright (C) 2010 The R Foundation for Statistical Computing

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

>help(mean) # calling the help function on function mean
>print("First use of R?"); print("Yep!")
[1] "First use of R?"
[1] "Yep!"
>avariable <- "assignment of a string to a variable"
>bvariable <- 4e-5 # assignment of a small number to a variable
>q(save="no") # quitting the application

5
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The example and the associated discussion illustrate that source code herein is typeset
in amonospaced font and thatmatched () characters preceded by an alphabetic string are
used to signify the name of a function. Code comments, characters not interpreted by R,
are preceded by the # character and are typeset herein with an # obligue type face. Mul-
tiple commands on a line are separated by the ; (semicolon) as done for the two print()
commands in the example. Spaces in strings are indicated by the " " character, but this
character is not typed by the user—the space bar suffices. Assignments to variables, scalars
in the case of the example, are made by the “<-” operator and generally not by the = sign.
The example also shows that the “>” character is the (default) command prompt. To facil-
itate cut-and-paste operations from portable document format (PDF) versions and the
monolithic LATEX source files of this dissertation, the prompts are suppressed in all other
examples. An additional note concerning the contents in the examples is needed.

Many of the examples have the code #pdf() and #dev.off() as pairs with graphical
plotting functions between the pair. The pdf() function is used to generate portable doc-
ument format (PDF) files and shows the name of the portable document format (PDF) file
used in the typesetting of this dissertation; the dev.off() function closes the file. These
two functions are commented out by the # character. These functions are not intended for
end users but are specifically retained to remain available for errata correction in deriva-
tives of this dissertation.

The large number of R examples and their typical length results in formidable chal-
lenges in page breaking and therefore layout. As a result, the examples in this dissertation
have been permitted to internally break like paragraphs across pages. It is anticipated that
this style will not be of major inconvenience to most readers. Virtually all of the figures
are generated by the examples, and for layout purposes, the figures for the most part have
been permitted to “float” to their present locations by the algorithms of the LATEX typeset-
ting system. Finally, breaks between topically distinct examples or demonstrations, which
typically follow the Using R identifiers, are separated by a right-justified, black triangle.
An example is shown to the right. J

The intent of the triangles is to help alert the reader to interruptions between narratives
describing one or more listings of example code and the example-specific discussion.
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1.2.1 Internet Resources for R

Because R is a popular and global project, the Internet naturally provides a myriad of
sources related to the use of R. The R project website http://www.r-project.org
contains numerous links to portable document format (PDF) manuals (R Development
Core Team, 2009; Venables and others, 2008), frequently asked questions (FAQs), confer-
ences, newsletter (“R News,” 2001–08), dedicated journal (“The R Journal,” 2009–present),
books, mailing lists, tutorials, and other supporting material. A handy ensemble of R

reference cards is provided by Short (2004).

The CRAN provides “home pages” for specific packages. These can be accessed by
http://www.cran.r-project.org/package=NAME. For example, the lmomco pack-
age (Asquith, 2011), which is a major component of this dissertation, can be accessed by
http://www.cran.r-project.org/package=lmomco. Finally, a particularly useful
entry point on the topic of distributional support in R is found at http://www.cran.
r-project.org/web/views/Distributions.html. Readers are strongly encour-
aged to review this web page for a sweeping review of distributional packages using R;
many other details also are provided.

1.2.2 Traditional Publishers for R

In the few years previous to 2011, many books related to R have been published.
Notable publishers of R-related books include Cambridge University Press, Chapman &
Hall/CRC, John Wiley, McGraw-Hill, O’Reilly Media, Sage Publications, and Springer.
The Journal of Statistical Software http://www.jstatsoft.org regularly publishes
articles on R including R-package introductions.

There are now (2011) many books focused on the R software and statistical analysis
using R. There often is substantial overlap between the material in the cited books herein.
Some books have both introductory and advanced material. In each case, the authors all
have their own unique stories to tell. Books focused on introductory material are Dal-
gaard (2002), Heiberger and Holland (2004), Braun and Murdoch (2007), and Sawitzki
(2009). For an additional introduction to data analysis, R syntax, and techniques, Everitt
and Hothorn (2006) and Maindonald and Braun (2003) are recommended. A specialized
book on R programming, but more significantly data manipulation, is provided by Spec-
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tor (2008). Readers interested in multivariate analysis might consider Everitt (2005). Two
outstanding books as references related to linearmodel buildingwith R are Faraway (2005,
2006). A comprehensive reference on use of R for graphical display is provided byMurrell
(2006), and extensive discussion of R graphics in thoroughly documented applications
is provided by Keen (2010). Jurečková and Picek (2006) provide a reference on robust
statistics with R. A comprehensive quick reference to R and many auxiliary packages is
provided by Adler (2010).

Additional references that encompass the use of R in statistics education and applied
probability are Rizzo (2008), Verzani (2005), and Ugarte and others (2008). Finally,
Baclawski (2008) provides a detailed review of R programming techniques used in practi-
cal circumstances. Reimann and others (2008) provide extensive presentation of R in an
environmental statistics context; these authors have a different approach relative to the
other books in that they do not present line-by-line R programming examples. Qian (2010)
provides an outstanding case-study oriented review of basic to advanced statistical infer-
ence and modeling techniques associated with environmental, hydrologic, and ecological
data. Collectively, the cited books and others therein show that R has earned tremendous
popularity across a wide spectrum of disciplines.

1.3 L-moments—A general description

Data have sample distributions. Analysis of these data, univariate in the context here, is
a complex subject, which is simultaneously influenced by, and has influence in, many
branches of statistics and other disciplines. The literature of distributions is extensive, and
disciplines requiring distributions are encompassing. L-moments provide a powerful and
easy to use statistical framework for distributional analysis.

The theory of L-moments described herein includes definition of L-moments, trimmed
L-moments, methods for L-moment computation for distributions and estimation from
samples, inclusion of probability-weighted moments, sample properties of both moment
types, parameter estimation methods for numerous familiar and not-so-familiar distri-
butions, techniques for discriminating between distributions, and other topics. An out-
standing contextual entry point for some of the analytical themes herein is available
in Wallis (1988).
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Beyond a reasonable sampling of the relevant “journal” literature cited herein, there are
several books containing information about L-moments includeing Stedinger and others
(1993), Hosking and Wallis (1997), Hosking (1998) (article), Gilchrist (2000), Dingman
(2002), and Kottegoda and Rosso (2008). In particular, Stedinger and others (1993) and
Hosking and Wallis (1997) are canonical L-moment references as well as the monograph
of Hosking (1986) on probability-weighted moments.

What are L-moments? To answer succinctly, although not expected to be clear to most
readers at this point, L-moments (Hosking, 1990) are defined through linear combina-
tions of the expected values of order statistics. The study of order statistics is a branch
of statistics concerned with the statistics of ordered random variables and samples. The
familiar minimum, maximum, and median are likely the most familiar order statistics.

L-moments are direct analogs—but not numerically equivalent—to well-known prod-
uct moments, such as standard deviation or skew. The first L-moment is the arithmetic
mean, which should be particularly comforting to readers who are not previously familiar
with L-moments. As analogs, L-moments have similar, that is, familiar, interpretations
and hence applications as the product moments. L-moments, therefore, are useful and
are intellectually accessible to most of the general scientific and engineering community.
Accessibility into L-moment theory is greatly enhanced in practical application by the
L-moment support available in R as described and demonstrated in this dissertation.

L-moments have many advantages over the product moments including natural unbi-
asedness, robustness, and often smaller sampling variances than provided by other esti-
mators. These advantages are particularly important with data having large range or vari-
ation, large skewness, and heavy tails. The sampling properties of L-moments are central
to their attractiveness for distributional analysis of Normal to non-Normal, symmetrical to
asymmetrical, and thin to heavy-tailed distributions. The attractive sampling properties
in the context of using R are shown by example. In short, L-moments provide comprehen-
sive “drop in” replacements for product moments in many practical situations or at the
very least are complementary to the product moments.

L-moments have an exciting extension to multivariate data. These L-moments are
known as L-comoments (Serfling and Xiao, 2007). L-comoments can measure asymmetri-
cal relations between variables in multivariate data. Multivariate distributional analysis
is generally outside the univariate scope of this dissertation. However, in a circumstance
(the terminal section of this dissertation) where it makes sense, L-comoments are included
along with copulas, which are convenient mathematical constructs for multivariate work.
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1.3.1 L-moments in R

At the time of this writing (2011), three R packages in particular provide general-
ized support L-moment-based approaches for distributional analysis. The packages are
Lmoments (L-moments and Quantile Mixtures) by Karvanen (2009), lmomco (L-moments,
Trimmed L-moments, L-comoments, Censored L-moments, and Many Distributions) by the
author (Asquith, 2011), and lmom (L-moments) by Hosking (2009a). There also is the more-
discipline-specific lmomRFA (Regional Frequency Analysis using L-moments) package by
Hosking (2009b).

Collectively, these packages answer a call by Royston (1992) who states in the abstract
that “Indices of distributional shape based on linear combinations of order statistics have
recently [1990] been described by [Hosking (1990)]. [The] usefulness [of L-moments] as
tools for practical data analysis is examined. [L-moments] are found to have several advan-
tages over the conventional [product moment] indices of [skew] and kurtosis [with] no
serious drawbacks.” Royston (1992) continues “It is proposed, therefore, that [L-moments]
should replace [skew] and [kurtosis] in routine data analysis, [and] to implement this sug-
gestion, action by the developers of standard statistical software is needed.” (The bold
typeface is this author’s.)

Other packages, such as the POT package (Generalized Pareto and Peaks over Threshold)
by (Ribatet, 2009) and the RFA package (Regional Frequency Analysis) by (Ribatet, 2010),
provide for computation of L-moments and discipline-specific features. Collectively, the
six cited packages appear to currently (2011) cover, albeit with some redundancy, the
general gambit of L-moment theory and support from theCRAN. A listing of packages that
provide L-moment support,1 in the order of initial release, is provided in table 1.1. There
remains much room for growth in R for packages related to L-moments, and additional
discussion is provided in the Epilogue of this dissertation.

1 Gilleland and others (2010) provide the extRemes package related to extreme value analysis
that uses some L-moment functions from the Lmoments package by Karvanen (2009). Also, Su
(2010) provides the GLDEX that is focused on the Generalized Lambda distribution (see page 272
for more discussion). The package provides for parameter estimation using Su’s own L-moment
functions. These functions are credited to Karvanen and thus seem to derive from the Lmoments
package. The GLDEX package also provides many appropriate citations to Asquith (2007).
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Table 1.1. Summary of L-moment related R packages available on the CRAN in order of initial
release
Package Citation Initial release Current release
POT Ribatet (2009) September 6, 2005 October 16, 2009
RFA Ribatet (2010) September 14, 2005 January 14, 2010

Lmoments Karvanen (2009) October 12, 2005 January 19, 2011
lmomco Asquith (2011) January 31, 2006 April 15, 2011
lmom Hosking (2009a) July 3, 2008 November 29, 2009

lmomRFA Hosking (2009b) March 3, 2009 August 22, 2010

1.3.2 Internet Resources for L-moments

Across the distal reaches of the Internet are several useful resources related to
L-moments. Robert Serfling at University of Texas at Dallas provides a central location
http://www.utdallas.edu/~serfling/ that contains useful references and links.
J.R.M. Hosking’s L-moments page is located at http://www.research.ibm.com/
people/h/hosking/lmoments.html. A Matlab program by Kobus Bekker is located
at http://www.mathworks.com/matlabcentral/fileexchange/loadAuthor.
do?objectType=author&objectId=1094208 and a Stata module by Nicholas
J. Cox to generate L-moments and derived statistics is available at http://ideas.
repec.org/c/boc/bocode/s341902.html.

1.4 Purpose and Organization

There are several interrelated purposes of this dissertation. One purpose is to present a
framework by which distributional analysis of univariate data with L-moment statistics
using R can be performed by practitioners with a wide variety of skill levels and edu-
cational backgrounds. This dissertation is structured to provide a general reference to
L-moment and related statistics in which many readers might find useful the ability to
browse or use specific pages of the text. The general reference nature also requires the
occasional use of both foreshadowing and back referencing by cross reference within the
text.
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Another purpose of this dissertation is to serve as a supplemental text in courses involv-
ing analysis of univariate distributions and samples. Dingman (2002, Appendix C) and
also Kottegoda and Rosso (2008) are textbooks oriented towards civil and environmental
engineering, and both books provide treatment, albeit brief, of L-moments.2 To enhance
the textbook purpose, vocabulary words at their primary introduction or definition are
typeset in bold typeface as are the page numbers in the index.

The purposes of this dissertation are achieved by a balance of mathematical discussion
(about 515 numbered equations) and use of L-moments along with related statistics in
both theoretical (simulation) and practical (real-world data) circumstances. To achieve this
purpose, numerous examples ofR code are provided, and the lmomco, lmom, and Lmoments
packages are used. The focus here however is near universal on the lmomco package, and
the author’s unique contributions to the field. A major purpose of this dissertation is to
further enhance the documentation of the author’s lmomco package far beyond the scope
of the user’s manual (Asquith, 2011).

This dissertation generally is organized as follows. This introductory chapter provides
(1) background discussion prior to delving into distributional analysis and (2) a small
section of basic visualization of sample distributions using R.

Chapter 2 provides an introduction to the concepts of distributional analysis, proba-
bility distributions, and discussion of basic summary statistics. Also in Chapter 2, the
properties of probability distributions, the technique of fitting a distribution by moments
(a generic or conceptual meaning at this and that point in the narrative), and alternative
methods for visualization of distributions are described. Ending Chapter 2 is a simple
demonstration of distributional analysis for both simulated and real-world data in order
to cast appropriate themes for the remainder of this dissertation. To complete the back-
ground and setup, Chapter 3 provides an introduction to the order statistics and demon-
strates some connections to L-moment theory.

In order to provide a complete narrative and provide for juxtaposition with L-moments,
Chapter 4 defines and demonstrates the use of product moments. Some basic sampling
properties of product moments are expressed in that chapter through many examples.
Chapter 5 defines and demonstrates use of the probability-weighted moments, which
were historic predecessors to L-moments. The probability-weighted moments are very
2 It should be noted that Dingman provides more detailed treatment. The author took a civil engi-
neering course in 1994 in which a “handbook” containing Stedinger and others (1993) was used
as a supplemental text. Stedinger and others (1993) provides much detail concerning L-moments.
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useful companions to L-moments and are an important component of L-moment theory.
Further, the probability-weighted moments facilitate use of L-moments for censored dis-
tributions. The L-moments are formally defined in Chapter 6, and the sampling properties
of L-moments are numerically explored by example and graphical output in that chapter.

L-moments primarily are used with probability distributions. Therefore, the rather
lengthy sequence of Chapters 7–9 summarizes numerous distributions and their respec-
tive L-moment statistics as supported by the lmomco package and in many cases the lmom
package as well. Many examples of these three chapters use functions that are otherwise
interwoven throughout the tapestry of the greater text. A given reader in time would be
expected to make several passes through these three chapters to grasp the entirety of the
material.

Distribution selection is an important and complex subject. The theory of L-moments
offers a convenient and powerful tool for discriminating between distributional form and
ad hoc judging of goodness-of-fit through the use of L-moment ratio diagrams. These are
described in Chapter 10. Hypothesis testing of goodness-of-fit is outside the scope here;
readers are directed3 to basic statistical texts (Verzani, 2005, Section 9.3) and papers (Vogel,
1986). Sawitzki (2009, pp. 10–34) provides considerably relevant attention to “distribution
diagnostics.” Finally, the R language has several built-in functions for goodness-of-fit test-
ing, such as ks.test() (Kolmogorov-Smirnov test) or shapiro.test() (Shapiro-Wilk
test for normality).

Short studies and advanced topics are presented in Chapters 11 and 12, respectively.
The References section contains all citations used in the text and is followed by an Epilogue
that will provide the reader with the author’s vision for further expansion of the large
body of work herein and L-moment support in R.

A topical “Index” is provided to enhance accessibility and reference component of
this dissertation. Finally, the “Index of R Functions” separately lists built-in R functions,
other miscellaneous functions created in this dissertation, and functions in the lmomco,
Lmoments, and lmom packages as well as selected functions of a few other R packages.

3 The topic of goodness-of-fit is enormous and the single book and paper cited here are but a trifle
of the literature on the subject. Internet searches are suggested: “L-moments goodness-of-fit” will
provide hits of particular relevance to this dissertation. Finally, because plotting positions are so
common in the hydrologic sciences and this dissertation, the citation to Vogel (1986) is justified.
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1.5 Reader Expectations and Advice to the Reader

For this dissertation, it is assumed that the reader already possesses basic understanding
of statistics, knowledge of the concepts of probability distributions, and working knowl-
edge of a programming language—not necessarily R. The basic understanding of statistics
implies familiarity with distributions and product moments, such as the arithmetic mean
and standard deviation, as well as rank-based (order-based) statistics such as the median.

Many readers are advised that a single thorough or meticulous pass through the text
might not be as effective as first understanding the general organization and content and
then proceeding to search for specific content as needed. The text is large, complex, and
multipurpose. Each pass through the text is expected to produce new discoveries to many
readers.

This dissertation is not intended as an introduction toR per se, and thus an initial tutorial
or extensive introduction toR is not explicitly provided. For a broad introduction to R, Dal-
gaard (2002) provides an outstanding resource. The author also recommends Heiberger
and Holland (2004). However, for the code-based examples herein, programmatic oper-
ations (assignments, loops, conditionals), which are outside the topic of L-moments and
related statistics, rely on built-in and commonly used R functions. Readers possessing
some programming aptitude thus should be able to readily grasp, adapt, and extend the
examples.

This dissertation presents various elements of problem solving in an algorithmic frame-
work. The examples are purposefully written in a generally verbose style with perhaps
excess redundancy of description for the examples spread throughout the text. The author
has avoided shortcuts in syntax, which the R language can provide through its own
idiomatic constructs. The general avoidance of shortcuts is done so that the program-
ming style remains elementary and more self explanatory. As a result, the concepts and
code functionality herein should be readily accessible to the intended audience. Finally,
the author has purposefully tried to use as many built-in R functions (about 125) as con-
textually appropriate so as to also have this dissertation serve as an effective document of
algorithmic programming for distributional analysis using R.

For general documentation and educational puposes, the examples often are explained
in detail. This dissertation also is supposed to be a reference, and therefore, examples
in early portions of this dissertation generally and purposefully are more thoroughly
explained than in later portions. This practice is especially evident in Chapters 11 and 12,
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which are more advanced and naturally are more dependent onmaterial presented in pre-
vious chapters—the elementary portions of the examples are less thoroughly described.

It also is assumed that readers are capable of installing external R packages and have
already installed the lmomco, lmom, and Lmoments packages. For virtually all of the exam-
ples herein, it is assumed that at least the lmomco package has been loaded into the work
session to gain access to package functionality.

Example 1–2 demonstrates the package loading mechanism or library() function
of R. The majority of the examples, however, use (require) the lmomco package only. When
the lmom, Lmoments, or other packages are used, it will be made clear to the reader and
often made explicitly clear by library() calls. The narrative is purposefully written so
as to generally not identify the source of the function such as: “the library() function of
R” or “the cdfgum() function of lmomco.” Such a practice would considerably lengthen
the text. The “Index of R Functions” distinguishes between the source of each function pre-
sented herein, and readers are explicitly directed there when confusion arises concerning
the source package of a function.

1–2
# load the three packages
library(lmomco) # only this package is needed for most examples
library(lmom)
library(Lmoments)

help(pmoms) # help for the sample product moments (lmomco)

Finally, the installation methods for R packages vary slightly by computer platform and
security credentials available to the user. Readers requiring initial instruction or assistance
should consult theRwebsite at http://www.r-project.org and follow the links such
asManuals or FAQS. Even brief searches on the Internet with terms such as “installation
of R” should find helpful guides and documents on installing R for most computer plat-
forms.

1.6 Types of Data

There are literally an infinite number of univariate data types. One type of data, very
loosely defined, is of interest for the distributional analysis described herein; those data
types that are non-Normal. In particular, data characterized by, or having a tendency
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towards, heavy tails (left, right, or both), asymmetry, and the regular presence of out-
liers are examples for which the properties L-moments are attractive. Examples of such
data types are earthquake (geophysical), floods and droughts (hydrological), and rainfall
(meteorological). Hydrological and meteorological data often will be used herein as these
data are the most familiar to the author.

Throughout this dissertation, numerous, and generally self-contained, examples are
provided. Often these examples use simulation (see Ross, 1994, chap. 10) to generate syn-
thetic data by random drawings from a specified parent distribution. An R-oriented dis-
cussion of simulation is found in Rizzo (2008, chap. 3), Verzani (2005, chap. 6), and Qian
(2010).

Simulations and simulated data are used herein for at least two purposes. First, gener-
ation of simulated data in the examples facilitates the construction of self-contained code
and minimizes the presentation “overhead” related to accessing and reading in external
data. Second, by explicitly specifying the parent distribution or “truth” in a statistical
context, the characteristics or properties of various statistics or distributional form can be
explored here and independently by self-study-minded readers. Simulated data removes
the constraints of sample size and permits exploration of the effects of sample size on
statistical procedures. As will be seen, the R environment is outstanding for statistical
experimentation by simulation.

It is assumed that most readers who originate from nonstatistical backgrounds might
have limited or perhaps no prior experience with simulation and exploration of sampling
properties of statistical estimators. This assumption is made based on the author’s expe-
riences with curricula outside of degrees in statistics, and particularly experiences with
geoscience and engineering programs, that lack a core statistical component. As a result,
many of the examples are intended to provide a sufficient structure to aid adventurous
readers in self study. By incorporating simulated data, readers implementing the examples
will produce numerical or graphical output that should differ in value or appearance—but
the general nature of the results should remain the same. An appropriate balance between
real-world data and simulated data hopefully has been achieved.

Using R Using R

Input of external data and output of results to external files is an important feature
of R. For some examples, the loading of external data files is needed. Five functions in
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particular are useful and are listed at the R prompt by ?read.table. Those functions
are listed in example 1–3 .

1–3
read.table(file, header = FALSE, sep = "", quote = "’",

dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE,
fill = !blank.lines.skip, comment.char = "#",
strip.white = FALSE, blank.lines.skip = TRUE,
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
encoding = "unknown")

read.csv(file, header = TRUE, sep = ",", quote=’"’, dec=".",
fill = TRUE, comment.char="", ...)

read.csv2(file, header = TRUE, sep = ";", quote=’"’, dec=",",
fill = TRUE, comment.char="", ...)

read.delim(file, header = TRUE, sep = "\t", quote=’"’, dec=".",
fill = TRUE, comment.char="", ...)

read.delim2(file, header = TRUE, sep = "\t", quote=’"’, dec=",",
fill = TRUE, comment.char="", ...)

Following Rizzo (2008, p. 367), the creation and use of a comma separated file or a

*.csv file is informative. In example 1–4 , a data frame is created for some fabricated
streamflow data, and these data are written using the write.table() function to a file
titled “temp.csv.” In turn, the data are reloaded using the read.csv() function. A type
of input-output process in R is shown.

1–4
# create a "hydrograph" of streamflow in cubic meters per second
streamflow <- c(0, 10, 40, 50, 100, 400, 300, 200, 75, 50)
minutes <- 1:length(streamflow)*60 # cumulative time
# create the data frame that contains both "columns" of data
d <- data.frame(FLOWcms=streamflow, TIMEmin=minutes)
# write the data frame, temp.csv can be opened by text editor
write.table(d, "temp.csv", sep=",",

row.names=FALSE, quote=FALSE)
rm(d,streamflow,minutes) # remove the objects
# Now read data back in, but output for read.csv shown only
# read.table(file="temp.csv", sep=",", header=TRUE)
read.csv(file="temp.csv") # same thing

FLOWcms TIMEmin
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1 0 60
2 10 120
3 40 180
4 50 240
5 100 300
6 400 360
7 300 420
8 200 480
9 75 540
10 50 600

For the examples in this dissertation however, the majority of external data have been
formatted into the *.RData format (see ?save) and are available from the lmomco pack-
age. These data are accessed by the data() function, which is formally introduced in the
next section. J

1.7 Visualization of Sample Distributions—Histograms and Box Plots

The visualization of sample distributions is an elementary and informative step of distribu-
tional analysis. Sample distributions, sample (fitted) probability distributions, and parent
probability distributions are graphically depicted throughout this dissertation. However,
two elementary graphical techniques, which will not see extensive use elsewhere in the
examples herein, are histograms and box plots. Those graphics are described by Cham-
bers and others (1983), Helsel and Hirsch (1992; 2002), Murrell (2006), and applicable
references therein, and R-oriented treatments can be found in Rizzo (2008, chap. 10) or
Ugarte and others (2008, pp. 45–46).

1.7.1 Histograms

To summarize, histograms are ad hoc depictions of the frequency or number of occurrences
of data points within specified intervals of the data understudy. Using R and the built-in
data frame titled airquality, two histograms are readily generated in example 1–5 . The
airquality data frame is loaded by the data() function as shown in the following exam-
ple (see ?data.frame). The ls() function lists the contents of the current workspace.
The names() function has no core use in the example, but is shown to illustrate a fea-
ture of R for querying the named contents of a data frame (and other data structures).
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First, the layout() function is used to specify the plotting layout, which is defined by
the matrix() function, of future graphic calls. In the example, two vertically stacked
plots are setup by the layout() function. Subsequent calls to the hist() function actu-
ally produce the corresponding histograms that are shown in figure 1.1. There are many
options available to the user of the hist() function but are not explored here.

1–5
data(airquality) # load in the airquality data frame
ls() # list the contents of the workspace
[1] "airquality"

names(airquality) # query the data frame for the named fields
[1] "Ozone" "Solar.R" "Wind" "Temp" "Month"
[6] "Day"

#pdf("hist.pdf")
layout(matrix(1:2, nrow=2)) # two plots, top and bottom
hist(airquality$Ozone) # histogram for the top plot
hist(airquality$Temp) # histogram for the bottom plot
#dev.off()

J

Although easy to use and common in graphical display of distributions in popular
culture, histograms are easily and unfortunately distorted by the size of the bins (intervals
on the horizontal axis), and in the author’s opinion, histograms generally are of limited
usefulness for quantitative distributional analysis. Somewhatmore sophisticated graphics
and tools are described in later examples. Histograms however do represent real features
of the data. The histograms of the previous example show that the ozone data have positive
skewness or in other words, skewed to the right (long right tail), and the air temperature
data are more symmetrical with a mean value in the upper 70s.

1.7.2 Box Plots

Box plots (Helsel and Hirsch, 1992, pp. 24–26) are another graphical construct for visu-
alizing sample distributions. Example 1–6 produces default box plots for the airquality
data frame, and the results are shown in figure 1.2. The boxplot() function is powerful,
and a wide range of options are available to the user. As a reminder, documentation of a
function is easily accessed by the user through the help() function: help(boxplot).
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Figure 1.1. Histograms of ozone and temperature for data in the airquality data frame from exam-
ple 1–5

1–6
data(airquality); attach(airquality)
#pdf("boxplot.pdf")
boxplot(Ozone/mean(Ozone, na.rm=TRUE),

Solar.R/mean(Solar.R, na.rm=TRUE),
Temp/mean(Temp), Wind/mean(Wind),
names=c("Ozone", "Solar Rad", "Temp", "Wind"),
ylab="VALUE DIVIDED BY MEAN", range=0)

#dev.off()

This example differs from example 1–5 in that the method to access the data of the
airquality data frame is distinctly different. This example attach()es the names into the
workspace so that ozone data are accessible as a simple name Ozone instead of the longer
syntax airquality$Ozone, which was shown in the previous example. (The function
detach() detaches the named contents of a data frame from the current workspace.)

For the ensemble of four box plots in figure 1.2, dimension in the data is removed
throughdivision by the respectivemean values. Thena.rm=TRUE is needed for ozone and
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Figure 1.2. Box plots of ozone, solar radiation, temperature, and wind speed data for data in the
airquality data frame from example 1–6

solar radiation data because missing values are present in each. The range=0 argument
causes the whiskers of the boxes to extend to the minimum and maximum of the data.
The bottom and top of the boxes represent the 25th and 75th percentiles, respectively. The
heights of the boxes, therefore, represent the interquartile range IQR. The thick horizontal
line represents the median or 50th percentile. In general, box plots provide compact and
unique visualization of the distribution for a given style of plotting parameters in contrast
somewhat to histograms.

Several interpretations of the box plots can be made. For the box plots, ozone has the
largest relative variation and appears positively (right) skewed towards large values. Tem-
perature has the smallest relative variation and is nearly symmetrical—perhaps the sym-
metry is caused in part by the diurnal (daily) heating and subsequent cooling of the land
surface. J

Because box plots provide a more succinct graphical depiction of the distribution of
the data relative to histograms, box plots are highly recommended and are preferable to
histograms. Conventional box plots, such as those in figure 1.2, are preferable because:
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1. Arbitrary bins are not used—the visual impact is affected by the width of the bins,

2. The plots locate the distribution on the real number line (like a histogram),

3. The plots quantitatively depict the statistics such as the median, mean, and quartiles,

4. The plots often depict the relative lengths of the left and right tails of the distribution
with greater visual precision than histograms,

5. The plots can specifically depict minimum and maximum of the sample, and

6. The plots can be configured to represent individual outliers (a feature not used in
figure 1.2).

The utility of graphical depiction of distributions—both parent or theoretical and
sample—cannot be stressed enough. The R environment provides powerful graphical
features and visualization of data to aid in interpretation of phenomena under study.
Many plot styles of distributions are illustrated in the figures of this dissertation.
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Chapter 2

Distributional Analysis

In this chapter, I present an introduction to distributional analysis by covering what

I believe are some of the most isolatable components of the dissertation. These com-

ponents include definition of distribution functions, basic summary statistics, fitting a

distribution to the sample moments, plotting positions, and demonstration of two com-

mon distributions to real-world data. Readers are advised to thoroughly understand

much of the material from this chapter with the exception of the algebra of quantile

functions. Such understanding will fulfill many prerequisites needed to understand this

dissertation and perform distributional analysis with L-moment statistics using R.

2.1 A Review of Continuous Random Variables and Distributions

Univariate data typically are generated from measurement methods of finite resolution
that are effectively continuous on the real-number lineR. For purposes of this dissertation,
it is reasonable to treat data as coming from a continuous random variable as opposed to
a discrete random variable. By convention, the symbolX orQ generally is used to denote
the random variable, and x will be used in reference to realizations or sample values of
the variable. Specific random samples will be identified by notation such as xi and xi:n
for the “ith sample” and “ith-largest sample of size n,” respectively.

It is important to remark about the concept of “random.” For many data examples,
it is sometimes obvious or generally understood that the data do not originate from a
purely random process in a statistical sense. However, the tools for distributional analysis
never-the-less remain useful. In some circumstances, distributional analysis provides a
convenient means to “fit” nonlinear functions (functions that are probability distributions
for the context here) to data. An example of data that do not originate from a purely
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random process is the sample distribution of air temperature depicted in the box plot in
figure 1.2 of the previous chapter. The hour-to-hour, day-to-day changes in air temperature
would not be expected to originate from a purely random process. For these data, the
air temperature data likely have considerable serial correlation in time. The box plot,
however, still provides quantitative information about the distribution of air temperature
during the monitored time period.

Particular phenomena, such as earthquake magnitude, reside in a strictly positive
domain. This fact does not pose an especially complex situation for distributional mod-
eling, but unique problems to such “bounded” data do arise. For now, it is sufficient to
understand that awareness of the physical meaning of data can be useful as part of distri-
butional analysis. Some distributions described herein are bounded and can be specified
to honor specific numerical bounds such as the Generalized Pareto. Whereas bounded-
ness might seem an appropriate piece of information to bring to problems within the
context of distributional analysis, the specific nature of the analysis might advise against
the practice of honoring theoretical or physical bounds.

Other phenomena can acquire exactly zero values, such as streamflow for a generally
dry wash in the American southwest. Sometimes, special accommodation is needed for
zero magnitude values using conditional probability techniques.

Three types of expressions for the distribution of a random variable are common. These
are the probability density function, cumulative distribution function, and quantile func-
tion (Ross, 1994; Evans and others, 2000; Gilchrist, 2000). These functions are described
in sections that follow. A comprehensive summary of built-in R support for probability
distributions is found in Venables and others (2008, chap. 8).

2.1.1 Probability Density Functions

The probability density is a concept in which the probability Pr[ ] of any given value of a
continuous random variableX is zero. The probability is zero because there are infinitely
many numbers infinitely close to the value x. So the probability at a given value x for the
variable is specified by the concept of density. The probability density function (PDF,
f(x)) is defined by

f(x) dx = Pr[x ≤ X ≤ x+ dx] (2.1)
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Other than depicting qualitative information about the structure of the probability
density, PDFs sometimes havemore restricted usefulness compared to the two other types
of functions described in sections that follow. The usefulness is restricted because the
numerical values of cumulative probability or nonexceedance probability are not available
(only probability density is), and in practice numerical values of probability often are
needed.

Using R Using R

An example PDF for illustration is shown in figure 2.1 for a Weibull distribution with
a specified shape parameter. The Weibull PDF in the figure was created by example 2–1 .

2–1
#pdf("pdf1.pdf")
x <- seq(0,3, by=0.01)
f <- dweibull(x, shape=1.5) # prepended "d" to "weibull" dist.
plot(x,f, type="l")
#dev.off()

The example produces a vector of x values from 0 to 3 in increments of 0.01 using
the seq() function, the vector is passed to the PDF of the Weibull distribution by the
built-in dweibull() function. In the R language, the plot() function produces the
graphic shown in figure 2.1. The type="l" named argument produces a line plot. The
shape parameter of the distribution is set by a named argument shape=1.5. The other
built-in distributions use a similarly named-argument interface. The letter “d” (density) is
prepended to the name or an abbreviation of the distribution for at least the distributions
built-in to R. J

2.1.2 Cumulative Distribution Functions

The cumulative distribution function (CDF) is defined as

F (x) = Pr[X ≤ x] (2.2)

where F is nonexceedance probability 0 ≤ F ≤ 1 for value x of random variable X .
The equation is to read “the probability that random variable X is less than or equal to
x.” The CDF is a nondecreasing function that defines the relation between F and x. The
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Figure 2.1. Probability density function for a Weibull distribution from example 2–1

derivative of the CDF or f(x) = dF/dx is the probability density so the CDF in terms of
the PDF is the integral

F (x) =

∫ x

−∞
f(t) dt (2.3)

CDFs are common in fields for which values for the random variable X are thought
of as “independent,” and thus graphical depictions of CDFs often have x on the hori-
zontal axis and F on the vertical axis. Practioners frequently “enter” problems from the
perspective that measurement of a phenomena has been made and a mapping to the
cumulative probability or percentile is needed. For example, a baby boy weighs 20 lbs
(9 kg) at four months, is this a large or small baby? The CDF of the weights of baby boys
with ages of approximately four months would hold the answer. Partly for convenience,
therefore, CDFs are common in some disciplines—meaning in graphical contexts that x
conventionally is depicted on the horizontal axis and F is on the vertical axis.

Also, in some disciplines the CDF is replaced by a function known as the survival func-
tion (other names are: complementary CDF, reliability function, and survivor function)
S(x). The function is an expression of exceedance probability or
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S(x) = Pr[X > x] (2.4)

where S denotes exceedance probability. The relation between the F (x) and S(x) is
straightforward: S(x) = 1 − F (x). In this dissertation, however, S(x) do not have a
central role and purposeful preference to F (x) usually is made.

Using R Using R

An example CDF for illustration is shown in figure 2.2 for standardNormal distribution,
which is a Normal distribution that has a mean of zero and a standard deviation of 1. The
figure was created by example 2–2 . The pnorm() function is the CDF of the Normal
distribution, which defaults to the standard Normal if no other arguments are provided.

2–2
#pdf("cdf1.pdf")
x <- seq(-3,3, by=0.01)
F <- pnorm(x)
plot(x,F, type="l")
#dev.off()

J

A followup to example 2–2 is 2–3 that shows how the mean and standard deviation
are set with the pnorm() function using the named arguments mean and sd. The mean
is set to−600 and the standard deviation is set to 400. The F value for x = −300 is about
0.77 (the 77th percentile).

2–3
mu <- -600 # mean
sig <- 400 # standard deviation
myF <- pnorm(-300, mean=mu, sd=sig)

print(myF)
[1] 0.7733726

Readers are asked to note in examples 2–2 and 2–3 the use of the “p” (probability or
percentile) in the name of the pnorm() function to call the respective CDF. The letter “p”
is prepended to the name or an abbreviation of the distribution for at least the distributions
built-in to R. J
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Figure 2.2. Cumulative distribution function for standard Normal distribution from example 2–2

2.1.3 Hazard Functions

A special function related to distributions is the hazard function, which is potentially
less commonly referred to as the failure rate function. Hazard functions are particularly
useful in distributional analysis involving life time data, such as the distribution of the
life span of a person or a part. The hazard function h(x) can be expressed in terms of the
PDF and CDF for random variableX (usually time). The function is defined by

h(x) =
f(x)

1− F (x)
(2.5)

where f(x) is a PDF and F (x) is the CDF. It is important to stress that h(x) is not an
expression of probability.

To help with intuitive understanding of what h(x) means (Ugarte and others, 2008,
p. 143), let dx represent a small unit of measurement. The quantity h(x)dx then can be
conceptualized as the approximate probability that random variableX takes on a value
in the interval [x, x+dx] or the approximate probability Pr[ ]
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h(x)dx =
f(x)dx

1− F (x)
≈ Pr[X ∈ (x, x+dx) | X > x] (2.6)

Ugarte and others (2008, p. 144) continue by stating that h(x) represents the instanta-
neous rate of death or failure at timex, given that survival to timexhas occurred (| X > x).
Emphasis is repeated that h(x) is a rate of probability change and not a probability itself.

Using R Using R

The lmomco package provides the hlmomco() function, which computes eq. (2.5) using
the dlmomco() (PDF) and plmomco() (CDF) functions. Mimicking the example by
Ugarte and others (2008, p. 144), the failure rate for an Exponential distribution is a con-
stant as example 2–4 shows. A vector of repeated failure rates equal to 0.01 is shown and
when inverted by 1/0.01, the scale parameter of 100 in my.lambda is recovered.

2–4
my.lambda <- 100 # scale parameter of Exponential dist.

# set a list of parameters for the Exponential distribution
para <- vec2par(c(0,my.lambda), type="exp") # used by lmomco

x <- 50:60 # sequence of 50 to 60 by increments of 1
hlmomco(x,para) # returns vector of repeated 0.01 values
[1] 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

J

2.1.4 Quantile Functions

A quantile distribution function (QDF, often simply a quantile function) provides an
alternative means of defining a distribution. Gilchrist (2000) provides a focused and out-
standing treatment of QDFs. A QDF is defined as

x(F ) = xF = the value x for which Pr[X ≤ xF ] = F (2.7)

where xF could be referred to as the F -quantile of the distribution. The notation x(F ) or
Q(F ) typically will be used to refer a QDF as a whole. Generally, the xF notation refers to
specific quantiles such as x(0.50) or x0.50. This quantile is the median or 50th percentile.
The CDF and QDF are inverses of each other, and in fact within some disciplines, the term
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inverse distribution function is the term used when referring to the QDF. This term is
not used herein. Notationally the following holds

g = F [x(g)] or x(F ) = F (−1)(x) (2.8)

for a nonexceedance probability g, the CDF F (x), and the QDF x(F ). The superscripted
(−1) notation of a QDF (inverse of the CDF) is seen in some publications and only rarely
used here.

QDFs are common in fields, such as hydrology, for which values for the random vari-
able X are unknown, but concepts such as risk are thought of as “independent.” Thus,
graphical depictions of QDFs often have F on the horizontal axis and x on the vertical
axis. Practioners frequently enter their problems from the perspective that a cumulative
percentile or nonexceedance probability is a known quantity. For example, suppose that a
government requires levees to be built for the 99.9th-percentile storm. The QDF of storms
for the geographic region under consideration would hold the answer.

In terms of the exploration of distributional properties and broader distributional anal-
ysis, working with QDFs generally provides for easier programming because values of F
are defined on a precisely constrained interval as 0 ≤ F ≤ 1, whereas the range of x is
distribution specific and exists in arbitrary portions of (or even the entire,−∞ < x <∞)
real-number line R. Emphasis is made, however, that the functionality of R makes work-
ing with either PDF, CDF, and QDF operations not particularly burdensome. The analyst,
when using R, has freedom to choose the syntax that is most natural for the problem at
hand.

The sample quantile function X̂(F ) can be defined as

X̂(F ) = xbnF c:n (2.9)

where F is nonexceedance probability, bac is the floor function and xi:n is the ith sample
order statistic (see Chapter 3). The floor function is implemented in R by the floor()
function.

Using R Using R

An exampleQDF for illustration is shown in figure 2.3 for a scaled (2*qexp) and shifted
(+10 ) distribution that is Exponential (note the use of “q” for quantile, qexp()). The
letter “q” is prepended to the name or an abbreviation of the distribution for at least
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the distributions built-in to R. The figure is created in example 2–5 in which the seq()
function is used to generate a sequence of F values on a dF = 0.01 interval.

2–5
#pdf("qdf1.pdf")
F <- seq(0.01,0.99, by=0.01) # nonexceedance probability
x <- 2*qexp(F) + 10 # exponential distribution quantiles
plot(F,x, type="l")
#dev.off()
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12
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Figure 2.3. Quantile function for an Exponential distribution from example 2–5

J

Another example is example 2–6 , which shows that eq. (2.8) is correct using the choice
of the Gamma distribution. The output of the two print() functions shows that g.A is
numerically equivalent to g.B. The qgamma() and pgamma() functions are inverses of
each other and represent the inverse transform method (Rizzo, 2008, p. 49).

2–6
g.A <- 0.76 # nonexceedance probability
x <- qgamma(g.A,4, scale=3) # the quantile at that prob.
print(x) # output the quantile
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[1] 15.55525
g.B <- pgamma(x,4, scale=3) # invert the quantile function
print(g.B) # the result, which is a nonexceedance prob.
[1] 0.76

J

To complete this section concerning QDFs, consider again the definition of probability
density

f(x) = lim
|xn+1−xn|→0

F (xn+1)− F (xn)

xn+1 − xn
=

dF

dx
(2.10)

or in other words, the change in probability per unit change in x. This differencing equa-
tion will be used in example 2–7 , and the utility of using R for statistical computing is
further shown.

Equation (2.10) provides a recurrence relation to solve for the QDF, which is a useful
construct when the QDF does not have an analytical solution. The recurrence relation is

xn+1 = xn +
F (xn+1)− F (xn)

f(xn)
(2.11)

where the quantile for a nonexceedance probability F can be computed using the CDF
F (x) and PDF f(x), and this is done in example 2–7 for F = 0.2 for a Pearson Type III
distribution (see page 243).

2–7
"qua.by.recursion" <-
function(F, para, x, eps=1e-8, ...) {

Fx <- plmomco(x, para, ...) # CDF of the lmomco package
tmp <- F - Fx # compute once, use twice
if(abs(tmp) < eps) { # very close in probability

names(x) <- NULL
return(x) # stop recursion and return

} else {
fx <- dlmomco(x, para, ...) # PDF of the lmomco package
newx <- x + tmp/fx # as seen in the equation
x.np1 <- qua.by.recursion(F, para, newx, eps=eps, ...)
return(x.np1)

}
}
# Set some parameters of the Pearson Type III distribution
# in the fashion of the lmomco package
para <- vec2par(c(1000,900,1.2), type="pe3")
# Compute 20th percentile by guess of 1000 (mean) for F=0.2
qua.by.recursion(0.2, para, 1000)
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[1] 240.6772

# QDF of PE3 distribution, uses qnorm() function
qlmomco(0.2, para)
[1] 240.6772

In the example, the vec2par() function sets the first three product moments of the
Pearson Type III as µ = 1000, σ = 900, and γ = 1.2, respectively. A first guess of
the solution is made, the guess is 1,000, which is the mean. The output shows that
PE3(F=0.2, 1000, 900, 1.2) = 240.7 from both functions, although the internal algo-
rithms differ. The “...” is a separate argument and represents additional and arbitrary
arguments that are to be passed to other functions, which in this case are called inside
the qua.by.recursion() function. The internally called functions are plmomco() and
dlmomco(). J

2.1.5 The Algebra of Quantile Functions

Gilchrist (2000, pp. 62–67) provides a summary of mathematical rules or algebraic opera-
tions that can be performed with QDFs. These are summarized and demonstrated in this
section. Quantile function algebra facilitates the construction of new distributions from
existing distributions, and the algebra is readily implemented using R.

In particular, the vectorized arithmetic of R, which is one of its most attractive features,
facilitates QDF algebra. With relatively few commands and hence keystrokes, many types
of statistical operations can be performed. The compact syntax of R facilitates the use of
QDF algebra. For example, several properties of QDFs are easily combined to create new
distributions with syntactically clear code—clear and concise code is a characteristic of
maintainable software.1

The Addition Rule

The distributionsQ1(F ) andQ2(F ) can be added:
Q(F ) = Q1(F ) +Q2(F ).

1 The author argues that modularity that enhances development of reusable code units has a
higher level of importance for maintaining code, but further discussion is beyond the scope here.
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The Addition Rule is easily demonstrated. TheQ(F ) for the addition of an Exponential
and a Normal distribution is produced by example 2–8 .

2–8
F <- seq(0.5,0.62, by=0.04) # a narrow range of F values to show
Q1 <- qexp(F, rate=1/30)
Q2 <- qnorm(F, mean=10, sd=100)
Q <- Q1 + Q2 # Addition Rule

cbind(round(Q1,1), round(Q2,1), round(Q,1))
[,1] [,2] [,3]

[1,] 20.8 10.0 30.8
[2,] 23.3 20.0 43.3
[3,] 26.0 30.2 56.2
[4,] 29.0 40.5 69.6

The cbind() function binds a list of vectors into columns and the round() function
rounds each element of a vector to one digit to the right of the decimal in the example.
The example shows the x(F ) values as a matrix. The 50th percentile or median of Q(F )

orQ(0.50) can be written asQ0.50 = 30.8.

The Multiplication Rule for strictly positive variables

If each is strictly positive, the distributionsQ1(F ) andQ2(F ) can
be multiplied:Q(F ) = Q1(F )×Q2(F ).

The Multiplication Rule also is readily demonstrated and is shown in example 2–9 .
The productQ(F ) of the same two distributions (Q1 andQ2) from example 2–8 is

2–9
Q <- Q1*Q2 # Multiplication Rule

rbind(round(Q1,1), round(Q2,1), round(Q,1))
[,1] [,2] [,3] [,4]

[1,] 20.8 23.3 26.0 29.0
[2,] 10.0 20.0 30.2 40.5
[3,] 207.9 466.9 785.7 1177.0

where the third row is the productQ(F ). The rbind() function is used and binds a list
of vectors into rows. To clarify the effects of cbind() and rbind(), readers are asked to
compare the orientation of the matrices in examples 2–8 and 2–9 .
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The Intermediate Rule

The distributionsQ1(F ) andQ2(F ) can be mixed:
Q(F ) = wQ1(F ) + (1− w)Q2(F ) for 0 ≤ w ≤ 1. As a result,
Q(F ) will lie between the two original distributions.

The Intermediate Rule provides for blending of two QDFs together. Such blending
could be part of a more intricate model building process. One reason for blending two
QDFs together might be to achieve better performance or fit in the far left and right tails
than can be achieved by either distribution alone. It might be favorable to have a model
that can be tuned somewhat for tail behavior. The Intermediate Rule is demonstrated in
example 2–10 , and the results are shown in figure 2.4.

2–10
F <- seq(0.001,0.999, by=0.001)
w <- 0.35 # weighting
Q1 <- qweibull(F, shape=3, scale=100) # Weibull dist. quantiles
Q2 <- 25*qexp(F) # exponential distribution quantiles
Q <- w*Q1 + (1-w)*Q2 # Intermediate Rule

mylo <- min(Q1, Q2)
myup <- max(Q1, Q2)

#pdf("qdf2.pdf")
plot(F,Q1, type="l", ylim=c(mylo,myup),

ylab="QUANTILE",
xlab="NONEXCEEDANCE PROBABILITY")

lines(F,Q2, lty=2)
lines(F,Q, lwd=3)
legend(0,150,c("Q1", "Q2", "Q"), lty=c(1,2,1), lwd=c(1,1,3))
#dev.off()

In the example, a high-resolution sequence ofF values is first produced, and theweight
w is set to 0.35. Second,Q1 andQ2 are created as numerical curves of the two quite different
QDFs—a two-parameterWeibull and a one-parameter Exponential distribution. Third, the
two curves are blended by the weight w to form Q. Example 2–10 finally is completed by
using three graphic functions (plot(), lines(), and legend()) to generate figure 2.4.
The legend() function creates the legend or explanation in the plot, and the function
can take many arguments to control legend appearance and position.
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Figure 2.4. Blending two quantile functions to form a third by the Intermediate Rule from exam-
ple 2–10

The Reflection Rule

The distributionQ(F ) can be reflected about x = 0 and F = 0.5

by−Q(1− F ), which also is the distribution of the random
variable−Q.

The Exponential distribution is selected for a demonstration of the Reflection Rule in
example 2–11 . A convenient vector of F values is again generated by the seq() function.
A variable myna is given canonical missing value (NA) by using the as.character()
function. The myna variable will be used to “trick” R into “lifting-the-pen” to accom-
modate a single call to the plot() function for convenience. The Q vector contains the
unreflected Q1 distribution and the reflected Q2 distribution. The two distributions are
juxtaposed in figure 2.5.

2–11
F <- seq(0.01,0.99, by=0.01)
myna <- as.character(NA)
Q1 <- qexp( F, rate=1/100) # top curve
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Q2 <- -qexp(1-F, rate=1/100) # Reflection Rule, bottom curve
F <- c( F, myna, F)
Q <- c(Q1, myna, Q2)
#pdf("qdf3.pdf")
plot(F, Q, type="l")
#dev.off()
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Figure 2.5. Reflection (bottom) of an Exponential distribution (top) about x = 0 and F = 0.5
using the Reflection Rule from example 2–11

The Reciprocal Rule

The quantile function for the reciprocal 1/Q of random variableQ
is 1/Q(1− F ).

The Reciprocal Rule, through the use of the vectorized arithmetic of R, is easily applied.
Example 2–12 , without further explanation, would suffice for a quantile function Q(F )

and nonexceedance probability F .
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2–12
newQ <- 1 / Q(1-F) # Reciprocal Rule

The F-transformation Rule (transformation of probabilities)

IfH(F ) is a monotonic increasing function of F , but not
necessarily a QDF, but is non-decreasing on the interval
0 ≤ F ≤ 1 and is standardized so thatH(0) = 0 andH(1) = 1,
then operationQ[H(F )] produces a distribution with the same
range asQ(F ).

Consider a candidate transform function H ′(F ) = F 2 + 2F + 1 for demonstration
of the F-transformation Rule. This function can be standardized to a new functionH(F )

such thatH(0) = 0 andH(1) = 1 by

H(F ) =
H ′(F )−H ′(0)

H ′(1)−H ′(0)

or
H(F ) =

F 2 + 2F + 1− 1

4− 1
=
F 2 + 2F

3

Some functions for generalized application of the F-transformation Rule are now cre-
ated. Example 2–13 is used to define a transformation function HF() that is structurally
similar toH(F ) just described.

2–13
"HF" <- function(F) {

return(600*F^2 + 20*F + 100)
}

Next in example 2–14 , a function is created titled Ftrans() for actual implementation
of the F-transformation Rule. The function receives a vector of F values and the transfor-
mation function as a named argument (transfunc=NULL). The Ftrans() function uses
the check.fs() function to verify that the F values are 0 ≤ F ≤ 1 and return FALSE
if they are not. A test is made on the argument transfunc by the is.null() function
and return FALSE if the argument is not provided. The standardization of the transform
function is set into the variable nf. Finally, a checkwhether any() of the nf values are less
than 0 or greater than 1 is made as a precaution against a poorly specified transformation
function.
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2–14
"Ftrans" <- function(F, transfunc=NULL) {

if(! check.fs(F)) return(FALSE)
if(is.null(transfunc)) {

warning("a transformation function is required")
return(FALSE)

}
nf <- transfunc(F) - transfunc(0) / # the standardization

(transfunc(1) - transfunc(0)) # to a 0 to 1 interval
if(any(nf < 0)) {

warning("transformed value less than zero---revise transform
function")

return(FALSE)
}
if(any(nf > 1)) {

warning("transformed value greater than one---revise
transform function")

return(FALSE)
}
return(nf)

}

The demonstration of the F-transformation function Ftrans() is provided in exam-
ple 2–15 , and the results are graphically depicted in figure 2.6.

2–15
F <- nonexceeds() # convenient nonexceedance probabilities
#pdf("FtransC.pdf")
plot(F,Ftrans(F,trans=HF), type="l")
#dev.off()

Finally, the F-transformation Rule is demonstrated in example 2–16 , in which the
parameters for the Generalized Pareto distribution are set by the vec2par() function.
The qlmomco() function provides the QDF of the Generalized Pareto. The plot() func-
tion plots the distribution without the F-transformation. The example ends with a second
plotting of the QDF of the Generalized Pareto by the lines() function, but this time the
F values are transformed beforehand by the Ftrans() function. Both distributions are
plotted in figure 2.7.

2–16
#pdf("FtransD.pdf")
PARgpa <- vec2par(c(-400,100,-0.2), type="gpa")
plot(F,qlmomco(F,PARgpa), type="l")
nf <- Ftrans(F,trans=HF)
lines(F,qlmomco(nf,PARgpa), lty=2)
#dev.off()
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Figure 2.6. F-transformation function from example 2–15

The Q-transformation Rule (transformation of quantiles)

If z = T [x] is monotonic increasing function, then T [Q(F )] is a
quantile function.

The Q-transformation Rule is demonstrated in example 2–17 . The example uses a trans-
formation function similar in structure to that shown in example 2–13 .

2–17
"Tx" <- function(x) {

return(0.1*x^2 + x + 100)
}
F <- nonexceeds()
PARgpa <- vec2par(c(78,100,0.2), type="gpa")

Q1 <- par2qua(F,PARgpa) # original GPA distribution
Q2 <- Tx(quagpa(F,PARgpa)) # Tx as just defined

summary(Q1)
Min. 1st Qu. Median Mean 3rd Qu. Max.
78.20 93.99 142.70 182.10 235.90 433.70
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Figure 2.7. Comparison of original Generalized Pareto distribution (solid line) and F-transformed
Generalized Pareto distribution (dashed line) from example 2–16

summary(Q2)
Min. 1st Qu. Median Mean 3rd Qu. Max.
789.7 1077.0 2280.0 4754.0 5899.0 19350.0

The Standardization Rule

If a distributionR(F ) has a location parameter such as the median
or mean equal to zero and some linear measure of dispersion or
scale is unity, then the distributionQ(F ) = η + ψR(F ) has a
location parameter η and scale parameter ψ.

The Standardization Rule is straightforward and is shown in example 2–18 . In the
example, the location and scale parameters of the distribution are set into the variables
eta and psi. A random sample from a standard Normal distribution of n = 4,000 is
drawn and set into RF. Conversion of RF to QF is made, and the mean and standard
deviation statistics are computed and shown.
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2–18
eta <- 62; psi <- 56
RF <- rnorm(4000, mean=0, sd=1) # standard Normal distribution
QF <- eta + psi*RF # Standardization Rule

mean(QF) # estimate location parameter
[1] 62.19526
sd(QF) # estimate scale parameter
[1] 55.86824

2.1.6 Exceedance Probability and Recurrence Interval

It has been tacitly assumed that readers are versed in the basic concepts of probability
(Ross, 1994; Baclawski, 2008; Ugarte and others, 2008). By convention for this disserta-
tion, probability is considered in terms of F for consistency. Other practitioners, however,
based on personal preference or tradition within a discipline, might use exceedance prob-
ability S. The relation between the two is trivial: S = 1− F .

In some disciplines, including those such as hydrology, meteorology, geophysics, vol-
canology, and the supporting disciplines of engineering such as civil, earthquake, and
structural, the concept of probability often is expressed as recurrence interval or return
period in the parlance (Stedinger and others, 1993). Phrases such as the “100-year flood” or
“50-year storm surge” are common and have found a firm place in the regulatory context
of government and general media. In the author’s opinion, events of T -year (xT ) recur-
rence intervals are more precisely described by their annual nonexceedance probability.
(Despite misgivings, the author, however, still frequently uses the recurrence interval for
much of his professional communication.) The conversions between the two are straight-
forward and are

T = 1/(1− F ) (2.12)

F = 1− 1/T (2.13)

The discussion of recurrence interval explicitly is made because many examples here
involve annually sampled data. These data are derived on an annual basis, that is, data
that are measured on annual intervals. Such data might represent the coldest daily tem-
perature for each year or represent the number of frost-free days per year. A T -year recur-
rence interval is valid as an expression of probability for such data—although confusion
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regarding recurrence interval interpretation is common. Conversationally, using the term
“T -year recurrence interval” is convenient.

Contemporary understanding of recurrence interval by the general populace (nonsci-
entists, nonengineers, or nonstatisticians) is incomplete at best and misinformed at worst.
The T -year recurrence interval often is misunderstood as implying that one and only one
T -year event will occur in an interval of T years. Further, large T -year events, such as
the 100-year event, often are misunderstood as some sort of physical upper limit—the
phenomena cannot be greater than the 100-year event. Unfortunately, the F = 0.99 event
is seldom near or otherwise should be interpreted as representing an approximate upper
bounds for many natural phenomena such as flood magnitude.

There are two correct interpretations (Stedinger and others, 1993, p. 18.3) of recur-
rence interval if events are independent from year to year. First, the expected number
of exceedances of xT (the T -year event) in a fixed T -year period is equal to 1 or alter-
natively an event greater than the xT event will occur once every T years. Second, the
distribution of success or failures of exceedance above the xT threshold is Geometric with
mean µ = 1/(1− F ). The CDF of the Geometric distribution is

Pr[exactly k years untilX ≥ xF ] = F k−1(1− F ) (2.14)

Thus, another interpretation of recurrence interval is that the interval is the average time
until xT is exceeded.

Using R Using R

The conversion between T -year recurrence interval and F can be performed in R

using descriptively named functions as example 2–19 demonstrates. In the example, the
prob2T() andT2prob() functions are used. The example shows that the 75th percentile
of annual data is the 4-year recurrence interval and visa versa. The "\n" value (“newline”
character) is a universal symbol used to create a newline inmany programming languages
including R.

2–19
F <- 0.75 # 75th percentile
T <- prob2T(F); G <- T2prob(T)
cat(c("RI = ", T, " and computed F=", G, "\n"), sep="")
RI = 4 and computed F= 0.75

J
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The Geometric distribution is a built-in distribution of R. For example, the CDF of the
Geometric is provided by thepgeom() function. Example 2–20 shows that the probability
of experiencing or witnessing at least one 100-year event (F = 0.99 and S = 1− 0.99 =

0.01) in 100 years (an exceptionally long life time) is about 63.8 percent according to the
assumptions leading to use of the Geometric distribution and not 100 percent as, by the
author’s professional experience, the general populace often appears to assume.

2–20
pgeom(100,0.01) # nonexceed prob. of one 100-year event in
# exactly 100 years
[1] 0.637628

In conclusion, for distributional analysis of rare events in disciplines in which terms
such as the T -year event are used, care is suggested when reference to, or expression of,
probability as a T -year recurrence interval is made. J

2.2 Basic Summary Statistics and Distributional Analysis

The general properties of probability distributions are described at the beginning of this
chapter, and the examples shown thus far provide some details of distributional analysis.
Further, several useful functions for generic programming operations are used. Prepara-
tion for more expansive consideration of distributional analysis has been made. In this
section, a segue is made into basic summary statistics and using these in some introduc-
tory distributional analysis.

2.2.1 Basic Summary Statistics

Basic summary statistics for a data sample x1, x2, · · · , xn are straightforward to compute
and are shown in examples in this section. Formal definitions for some of these statistics
(mean and standard deviation) are deferred until Chapter 4.

Basic summary statistics include the mean µ; median x0.50; lower and upper quartiles
x0.25 and x0.75, respectively; and the minimum xmin and maximum and xmax, respectively.
Another basic summary statistic is the standard deviation σ. Each of these statistics are
readily computed using R by the summary() and sd() functions.
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In example 2–21 , a simulated data sample of size n = 100 is simulated or “drawn”
from a standard Normal distribution using the rnorm() function.

2–21
fake.dat <- rnorm(100) # 100 standard normal deviates
summary(fake.dat) # summary(rnorm(100)) using vectorized notation

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.38100 -0.64010 -0.05406 -0.10800 0.52350 1.90100
sd(fake.dat)
[1] 0.917965

The summary statistics in the example show that 25 percent of the data are less than
about −0.64, whereas about 50 percent of the data are less than about −0.05, and 75

percent are less than about 0.52. The minimum and maximum are self explanatory, but
each can be separately computed by the min() and max() functions, which are shown
in the example. The µ and σ statistics are said to be measures of location (place on the
real-number line) and scale (alternatively, dispersion, or spread) of the data. The x0.50
(median), like the µ, also is a measure of location.

Several concepts require further discussion. The use of statistical simulation, which
is shown repeatedly herein, is a powerful technique for exploration of the properties of
various sample statistics. For the example, simulation is used to generate “data” for the
previous example. In simulation,n pseudo-randomnumbers ofF :0 ≤ F ≤ 1 aremapped
through the QDF of the chosen distribution or its numerical equivalent should the QDF
of the distribution have no explicit form.

For example, instead of using the rnorm() function to generate random values from
the standard Normal distribution, the same statistical result for n = 100 also could be pro-
duced by example 2–22 . In the example, the qnorm() computes the x(F ) or quantiles of
the standard Normal. The runif() function, by default, provides uniformly-distributed,
pseudo-random numbers between 0 and 1.

2–22
fake.dat <- qnorm(runif(100)); print(fake.dat) # not shown here

Because simulation is used, examples 2–21 or 2–22 , if rerun, will produce different
numerical values for the outputted results. Thus, the basic summary statistics are to be
understood as estimators for which the numerical values are dependent on values from a
finite sample. The standard Normal distribution by definition has µ = 0 and σ = 1 (the
population values). However, the sample estimates are µ̂ = −0.108 and σ̂ = 0.918. The
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sample statistics are not equal to the population statistics (or values), but in this case
they clearly are close. It is desirable for a given statistic that as n → ∞ that the sample
statistic approaches or becomes equal to the population value. Unfortunately, in the real
world, analysts must contend or be content (often forced) with sample sizes less than ideal
or desired. The performance of a statistic as a function of sample size is a common theme
in this dissertation.

An important property of any sample statistic is that over repeated samplings for rea-
sonable values of n (reasonably meaning—sample sizes seen in real-world circumstances)
that the statistic “on average” attains the population value and that variability of the statis-
tic (sampling variance) is not too large. These and other sampling properties of statistics,
primarily product moment and L-moment statistics, will be demonstrated through short
simulation examples throughout this dissertation. Formal definitions of some of the more
informative sample properties of sampling bias and sampling variability are deferred to
Section 4.1.1. J

From the perspective of the programming needs for large applications, the access of the
summary statistics (and similar data structures in R) is important. These can be accessed
by collecting the summary statistics into a variable. Although the function IQR() that is
built-in to R computes the interquartile range, for purposes of illustration, example 2–23

computes the interquartile range of a standard Normal distribution using eq. (2.15) by
expression of the difference between the upper and lower quartiles from the results of the
summary() function.

IQR = X0.75 −X0.25 (2.15)

2–23
fake.dat <- qnorm(runif(100)) # generate 100 random samples
thesum <- summary(fake.dat) # basic summary statistics
dnQ <- thesum[2] # accessing the lower quartile
upQ <- thesum[5] # accessing the upper quartile
IQR <- upQ - dnQ # compute interquartile range
print(IQR)
3rd Qu.
1.1081

The printed value of IQR is improperly labeled, through inheritance, with an attribute
“3rd Qu.”—see the documentation for the attributes() and names() functions. The
attribute of the variableIQR is changed by thenames() function,which changes the name
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of the first item of the variable IQR to "IQR". This is demonstrated in example 2–24 . The
attributes() function can be used to remove the label as shown.

2–24
names(IQR)[1] <- "IQR" # set first label of IQR variable

print(IQR) # show that the setting was made
IQR

1.1081
# remove the IQR label, the following can be used
attributes(IQR) <- NULL; print(IQR)
[1] 1.1081

This use of labels for variables through the attributes() function is a powerful
method for enhancing the maintainability of software or enhancing the comprehension
of end users. Such attributes provide a means for self documentation of code when used
effectively. J

The range is the difference between the maximum and minimum of a distribution and
is defined as

W = Xn:n −X1:n (2.16)

Using the fake.dat generated in example 2–23 , the range is computed in example 2–25

where the W is understandably larger than the IQR.

2–25
W <- diff(range(fake.dat))
print(W)
[1] 4.855895

J

2.2.2 Fitting a Distribution by the Method of Moments

Distributions have parameters and distributions have moments. The statistics µ and σ
are known as the first two product moments and are respective measures of location
and scale of a distribution. If the parameters of a particular distribution are chosen such
that the product moments of a distribution are equated to the sample product moments
(µ = µ̂, . . .), then a distribution is said to be “fit” to the data. This moment-to-parameter
technique is venerable, is known as the method of moments, and is in widespread use
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(Rizzo, 2008, p. 38). The method of moments term typically is reserved for the context
of fitting a distribution by the product moments. However, distributions can be fit using
other method-of-moment-like algorithms. Mays (2005, chap. 10) reports “By fitting a dis-
tribution to a set of data, a great deal of the probabilistic information in the sample can
be compactly summarized in the function and its associated parameters.”

Some of the reasons that probability distributions are fit to samples include:

1. A continuous and portable model of the distribution of the data is needed so that either
F values can be converted to F → x using the CDF or x → F using the QDF. For
example, a manager or regulator of water quality for a river needs an estimate of the
streamflow at the 10th percentile (a drought) because water quality can be of concern
during periods lacking abundant rainfall;

2. A parametric model is needed for extrapolation to quantiles not represented by the
data. For example, the estimation of the 99.9th percentile from a small sample n = 20

is needed. This extrapolation is of critical interest in the design and management
of infrastructure, such as dams or earthquake hazards, in which design against the
deleterious effects of large events is paramount; and

3. A simulationmodel is needed to drive further investigation. For example, studies of
sample variability or studies involving the consequences of the failure of a part in a
larger system are to be made.

The method of moments using the Normal distribution is now demonstrated. Recalling
from elementary statistics courses, the PDF of the Normal is

f(x) =
exp(−[(x− µ)/σ]2/2)

σ
√

2π
(2.17)

whereµ and σ are parameters and also the first two productmoments (mean and standard
deviation) of the distribution. Because the productmoments are parameters andvisa versa,
the steps for fitting the Normal distribution are straightforward. To state succinctly, to use
themethod ofmoments, first, the sample µ̂ and σ̂ are computed, and second, these sample
values are substituted into eq. (2.17) as values for µ and σ, respectively. The method of
moments is thus applied.

From the author’s experience, as a periodic educator of both graduate and undergrad-
uate geoscientists and civil or environmental engineers, many of these students have only
one or two “statistics” courses. These students might recognize the symbols µ and σ, their
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respective meanings, and be familiar with the meaning of each. However, often these
students do not recognize that µ and σ in the case of the Normal distribution also repre-
sent “model parameters” and not just abstract statistics. When µ and σ are presented or
cast as model parameters—a concept familiar to the students from the language of other
courses—then greater insight into the Normal distribution and distributions in general is
acquired by course participants.

Using R Using R

The method of moments for the Normal distribution is readily shown in example 2–26

through simulation of a sample of sizen = 20 fromaNormal distributionwith parameters
set to µ = 500 and σ = 200. The population statistics are set into variables pop.mu and
pop.sd. The rnorm() function returns 20 sample (random) NOR(500, 200) values into
the variable fake.dat. The sample statistics µ̂ and σ̂ are computed by mean() and sd(),
respectively. The max() function demonstrates the utility of the vectorized arithmetic
of R—notice how the two vectors pop.PDF and sam.PDF are effectively merged, and the
global maximum is returned to myup.

2–26
#pdf("pdf2.pdf")
pop.mu <- 500; pop.sig <- 200; n <- 20
fake.dat <- rnorm(n, mean=pop.mu, sd=pop.sig)
x.bar <- mean(fake.dat); x.sig <- sd(fake.dat)
F <- seq(0.01,0.99, by=0.01)
x <- qnorm(F, mean=pop.mu, sd=pop.sig)
pop.PDF <- dnorm(x, mean=pop.mu, sd=pop.sig) # PDF of population
sam.PDF <- dnorm(x, mean=x.bar, sd=x.sig) # PDF of sample
myup <- max(pop.PDF, sam.PDF) # need a global max for plotting
plot(x,pop.PDF, type="l", ylim=c(0, myup),

ylab="PROBABILITY DENSITY") # thin line
lines(x,sam.PDF, lwd=3) # thick line
#dev.off()

The results of the example are shown in figure 2.8. In the figure, it is seen that the
location and scale of the parent distribution and the sample are similar, but the two curves
obviously do not have a one-to-one correspondance. The lack of correspondence exists
because the sample µ̂ and σ̂ values (x.bar and x.sig) are (expectedly) not numerically
equal to the parent µ and σ values. Therefore, the sample PDF (thick line) represents
a fit to the parent PDF (thin line). The differences in this case are substantial because
of the relatively small sample size of n = 20. If the sample size were increased to say
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2,000, then the resulting thick line will likely mask or hide the thin line of the parent
distribution. Because a parametric distribution is used and the distribution is Normal,
it must be stressed, that in both cases, the general shapes (curvatures) of the two fitted
distributions are identical. J
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Figure 2.8. Comparison of a parent Normal distribution (thin line) and sample Normal distribution
(thick line) for a sample of size 20 from example 2–26

2.2.3 Construction of an Empirical Distribution by Plotting Positions

An important component of distributional analysis is the construction of an empirical dis-
tribution. An empirical distribution is a distribution defined by the data values without an
explicit acknowledgment or interpretation of a parametric form of the parent distribution.
The empirical distribution has many applications including: (1) a technique to estimate
quantiles within the range of the sample, (2) a technique for effective visualization of the
distribution of the sample, and (3) a distribution to compare to one or more fitted distri-
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butions. The second application (visualization) is common in many of the examples and
resulting figures in this dissertation.

To construct an empirical distribution, plotting positions, which are well described by
Helsel and Hirsch (1992, p. 23) and Stedinger and others (1993, chap. 18, pp. 22–26), are
used to define the F or cumulative percentages of individual data points within a sample.
Plotting positions can provide complementary components for alternative graphics to
box plots. Plotting positions also can be used to construct probability graph paper or be
used to compare two or more distributions. Plotting positions often are used for graphical
display, and this is their primary use within this dissertation. The general formula for
computing plotting positions or plotting-position formula is

F (x) =
i− a

n+ 1− 2a
(2.18)

where i is an ascending rank, a is known as the plotting-position coefficient, and n is the
sample size. To generate the plotting positions, the following algorithm is followed:

1. Order the data x1:n ≤ x2:n ≤ · · · ≤ xn:n from smallest to largest to form the sample
order statistics (see Chapter 3),

2. Assign ranks to the ordered data 1, 2, · · · , i, · · · , n (i is rank), and

3. Compute F (x) = nonexceedance probability by the plotting-position formula in
eq. (2.18).

The true probability associated with the largest (and smallest) observation is a random
variable with mean 1/(n + 1) and a standard deviation of nearly 1/(n + 1). Hence, all
plotting-position formulas give crude estimates of the unknown probabilities associated
with largest and smallest events. The plotting-position coefficient can be set to several
different values. However, for general purposes the coefficient is a = 0, and thus, the
so-called Weibull plotting positions are accessed. The reader can convince themselves
that, as n becomes large, the choice of a becomes relatively unimportant. A listing of some
potential plotting-position coefficients is provided in table 2.1. For the examples here,
a = 0 or Weibull plotting positions will see near universal use in this dissertation. For
general quantile estimation, the Cunnane plotting positions are recommended (Cunnane,
1989; Helsel and Hirsch, 1992, 2002).

There exists use of i/n as a plotting position estimator, which is called the California
plotting position. This form is not recommended and not further considered here.
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Table 2.1. Selected plotting-position coefficients for eq. (2.18)

Name a Motivation
Weibull 0. Unbiased exceedance probabilities for all distributions
Median .3175 Median exceedance probabilities for all distributions
APL ≈.35 Useful with probability-weighted moments
Blom .375 Nearly unbiased quantiles for Normal distribution

Cunnane .40 Approximately quantile unbiased
Gringorten .44 Optimized for Gumbel distribution

Hazen .50 A traditional choice

Using R Using R

The quantile() function returns estimates of underlying distribution quantiles based
on one or two order statistics from the supplied elements in a vector at specified nonex-
ceedance probabilities. An R-oriented discussion is provided by Ugarte and others (2008,
pp. 42–43). The inverse of the quantile() function is the ecdf() function, which rep-
resents the empirical cumulative distribution function. The quantile() function sup-
ports each of nine quantile algorithms. A discussion of sample quantiles from statistical
packages is provided by Hyndman and Fan (1996). For the quantile() function the
sample quantiles of type i are defined by

Q[i](F ) = (1− ψ)xj:n + ψ xj+1:n (2.19)

where 1 ≤ i ≤ 9, (j − m)/n ≤ F < (j − m + 1)/n, and xj:n is the jth sample order
statistic (see Chapter 3), n is the sample size, and m is a constant determined by the
sample quantile type controlled by the value for i. Here ψ depends on the fractional part
of g = nF +m− j.

For the continuous sample quantile types (4 ≤ i ≤ 9), the sample quantiles can be
obtained by linear interpolation between the kth order statistic and F (k) or

F (k) =
k − A

n− A−B + 1
(2.20)

where A and B are constants determined by the specified type by i. Further, m = A +

F (1− A−B), and ψ = g.
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Two example applications of the quantile() function are shown in example 2–27 in
which 999 standard Normal random samples are drawn by the rnorm() function.

2–27
x <- rnorm(999)

quantile(x) # Extremes and quartiles by default
0% 25% 50% 75% 100%

-4.75557859 -0.62393911 0.09476024 0.73220817 3.24781578

quantile(x, probs=c(0.1,5,10,50,NA)/100)
0.1% 5% 10% 50%

-3.40851783 -1.58113414 -1.26403948 0.09476024 NA

J

The lmomco package provides specific support for computation of plotting positions by
the pp() function. Uses of the pp() function as well as theWeibull, Cunnane, and Hazen
plotting positions are now demonstrated.

In example 2–28 , some porosity (fraction of void space) data from an oil well in Texas
are available in the file clearforkporosity.csv, which is located along the lmomco
path lmomco/data/clearforkporosity.csv. The data from this file can be loaded
by the read.csv() function or, for purposes of this dissertation, by the data() func-
tion because the data is distributed with lmomco and resides in the data subdirectory
(R Development Core Team, 2009). In the example, the data are loaded, the respective
plotting positions computed, and set into PPw, PPc, and PPh.

2–28
data(clearforkporosity) # file extension is not needed

# from the lmomco package
names(clearforkporosity) # named contents of the data frame
[1] "POROSITY"

attach(clearforkporosity)
PHI <- POROSITY; PHI <- sort(PHI)
PPw <- pp(PHI) # Weibull plotting position
PPc <- pp(PHI, a=0.4) # Cunnane plotting position
PPh <- pp(PHI, a=0.5) # Hazen plotting position

The pp() function demonstration continues in example 2–29 by plotting the data,
and the effects of the choice of plotting-position formula on the tails of the empirical
distribution are seen in the resulting figure 2–28.
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2–29
#pdf("clearforkPP.pdf")
plot(qnorm(PPw),PHI, cex=3, pch=16, col=8, xlim=c(-2.5,2.5),

xlab="STANDARD NORMAL DEVIATE",
ylab="POROSITY")

points(qnorm(PPc),PHI, cex=2)
points(qnorm(PPh),PHI, cex=0.5, pch=16)
#dev.off()
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Figure 2.9. Empirical distribution by plotting position of porosity (fraction of void space) from
neutron-density, well log for 5,350–5,400 feet below land surface for Permian Age Clear Fork
formation, Ector County, Texas from example 2–29. The grey circles are Weibull positions, the
open circles are Cunnane positions, and the black dots are Hazen positions.

J

A comparison between the pp() and quantile() functions is made in example 2–30 .
For the example, the porosity data in variable PHI from example 2–28 are used.

2–30
PHI[1:3] # extract first three values of PHI
[1] 0.0449 0.0480 0.0520
# reversing Hazen method
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round(quantile(PHI, probs=PPh, type=5)[1:3], digits=4)
1.06383% 3.191489% 5.319149%

0.0449 0.0480 0.0520
# reversing through Weibull method
round(quantile(PHI, probs=PPw, type=6)[1:3], digits=4)
2.083333% 4.166667% 6.25%

0.0449 0.0480 0.0520

In the example, the first three smallest values: 0.0449, 0.0480, and 0.0520 are printed.
Second, using appropriate rounding, theHazen plotting-position formula is used through
thetype=5 argument for theHazen plotting positions in variablePPh from example 2–28

and extract the quantiles. Third, the Weibull plotting-position formula is used by setting
the type=6 argument to the quantile() function. For the Hazen andWeibull cases the
percentages change, but the two quantile ensembles are equivalent as shown by the first
three values of PHI. J

2.2.4 Two Demonstrations of Basic Distributional Analysis

Two demonstrations of basic distributional analysis, which also include use of plotting
positions, are provided in this section. The purposes of this section are (1) to provide a
glimpse forward to more formal and thorough distributional analyses described in later
chapters and (2) to establish the theme of the remainder of this dissertation. At the cost of
getting ahead in, but also foreshadowing, the narrative, plotting positions and distribution
fit are now demonstrated using the lmomco package.

Using R Using R

The first demonstration is example 2–31 , which simulates n = 30 values from a two-
parameterWeibull distribution using the built-in rweibull() function. The lmom.ub()
function computes a sample L-moments of the simulated data, and the parwei()

function computes the parameters for a three-parameter Weibull distribution from the
L-moments. The pp() function implements eq. (2.18) with a default to the Weibull plot-
ting positions. (The pp() function is used in many examples as a precursor to graphical
operations.) The empirical distribution finally is plotted with F on the horizontal axis and
the sort()ed data on the vertical. The quantiles for the plotting-position values of F are
drawn as a line by the lines() function, which makes use of the quawei() function for
the QDF of the Weibull. The output from the example is shown in figure 2.10.
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2–31
#pdf("pp1.pdf")
fake.dat <- rweibull(30,1.4, scale=400) # selected parameter vals
WEI <- parwei(lmom.ub(fake.dat)) # compute Weibull parameters

# from sample L-moments
PP <- pp(fake.dat) # plotting positions
plot(PP, sort(fake.dat), xlab="NONEXCEEDANCE PROBABILITY",

ylab="QUANTILE")
lines(PP,quawei(PP,WEI))
#dev.off()

J
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Figure 2.10. Empirical distribution of simulated data from specified Weibull distribution and
Weibull distribution fit to L-moments of the simulated data from example 2–31

Instead of using simulateddata to provide a seconddemonstration, the observed annual
peak streamflowdata for a selected streamflow-gaging station operated by theU.S. Geolog-
ical Survey are used. An annual peak streamflow is the largest instantaneous volumetric
rate of flow in a stream for a given year. Such data provide the backbone for statistical anal-
yses that govern the management of flood plains and design of drainage infrastructure
such as bridges.
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The selected streamflow-gaging station is 05405000 Baraboo River near Baraboo, Wis-
consin. The annual peak streamflow data were acquired at http://nwis.waterdata.
usgs.gov/nwis/peak/?site_no=05405000&amp;. This station has n = 73 years of
record between 1914–2006, and the data are available as a *.RData file provided in the
lmomco package. The data are titled lmomco/data/USGSsta05405000peaks.RData.

In example 2–32 , the Baraboo River data are loaded by the data() function and
attach()ed to the workspace for convenient access to the annual peak data. Readers
can find more details for the data.frame(), attach(), and detach() functions in
theR documentation: help(data.frame). The data of interest are in the column labeled
peak_va of the data frame. These data are sort()ed into the variable Q. The Weibull
plotting positions are computed using the pp() function. To demonstrate the fit of the
Normal distribution by the method of moments, the µ̂ and σ̂ sample statistics of the data
are set equal to the variables mu and sig, respectively. The data are strictly positive and
heavy tailed; therefore, the log-Normal distribution (a Normal distribution of logarithms
of the data) should also be considered. The µ̂ and σ̂ sample statistics of the log10(Q) val-
ues are set equal to the variables mu.lg and sig.lg, respectively. The values are shown
in the example.2

2–32
data(USGSsta05405000peaks) # load the *.RData file
attach(USGSsta05405000peaks)
Q <- sort(peak_va) # sort the annual peak streamflow values
PP <- pp(Q) # compute Weibull plotting positions
mu <- mean(Q)
sig <- sd(Q)
mu.lg <- mean(log10(Q)); sig.lg <- sd(log10(Q))
cat(c("#", round(mu.lg, digits=3), round(sig.lg, digits=4),"\n"))
# 3.438 0.2326
#pdf("pp2.pdf")
plot(qnorm(PP),Q,

xlab="STANDARD NORMAL DEVIATE",
ylab="STREAMFLOW, IN FT^3/S")

lines(qnorm(PP),
qnorm(PP, mean=mu, sd=sig)) # plot normal distribution

lines(qnorm(PP),
10^qnorm(PP, mean=mu.lg, sd=sig.lg),
lty=2) # plot lognormal distribution as dashed line

#dev.off()

2 This example is treated in further detail in Chapter 8. The values in the example are repeated in
table 8.3 on page 233.
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The example continues by plot()ting the empirical distribution of the data in which,
unlike example 2–31 , the horizontal axis is shown in standard normal deviates. Such an
axis is obtained by the qnorm() function. Data that are normally distributed will plot
as a straight line with a qnorm()-transformed horizontal axis and a linear vertical axis.
The qnorm() function, therefore, can be used to construct a “normal probability axis”
of standard normal deviates. Finally, the Normal distribution is plotted by the quantile
function qnorm() with µ = µ̂ and σ = σ̂, which in code is qnorm(PP, mean=mu,

sd=sig) and represents the method of moments. The log-Normal distribution also is
plotted by suitable argument substitution and transformation. The results are shown in
figure 2.11. For completeness, example 2–33 computes basic summary statistics and σ̂ by
the summary() and sd() functions, respectively.

2–33
summary(Q) # Q is defined in the previous example

Min. 1st Qu. Median Mean 3rd Qu. Max.
710 1950 3000 3135 4150 7900

sd(Q) # compute the standard deviation
[1] 1602.115

By elementary interpretation of the data points and the two fitted distributions in fig-
ure 2.11, the author concludes that these annual peak streamflow data are not normally
distributed. This conclusion is made because of the curvature of the data points relative to
the straight line of theNormal distribution. Visually, the log-Normal distribution provides
a much more reasonable model of the distribution of annual peak streamflow for these
data, but even this distribution appears to curve too much and away from the data in the
far tails.3 J

The basic distributional analysis of the Baraboo River annual peak streamflow is com-
pleted by creation of a box plot of the annual peak streamflows so that a juxtaposition
of the empirical distribution shown in figure 2.11 can be made. The code listed in exam-
ple 2–34 suffices, and the box plot is shown in figure 2.12. The whiskers extend to the
most extreme data points, which for this particular box plot are no more than 1.5 times
the IQR (interquartile range in eq. (2.15)) from the box. (The IQR() function computes
the IQR.) The lone open circle represents the largest, maximum, or xn:n value, which is
an order statistic maxima.

3 These annual peak streamflows also are used in the context of L-moment statistics in Section 8.2.3
in search of a better fit.
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Figure 2.11. Empirical distribution of annual peak streamflow for U.S. Geological Survey
streamflow-gaging station 05405000 Baraboo River near Baraboo, Wisconsin and Normal (solid
line) and log-Normal (dashed line) distributions fit by method of moments from example 2–32

2–34
#pdf("pp2boxplot.pdf")
boxplot(Q)
mtext("BARABOO RIVER", side=1)
#dev.off()

J

2.3 Summary

In this chapter, the concept of distributional analysis is expanded on relative to that pro-
vided in Chapter 1, and 34 examples are provided. This chapter reviewed continuous
random variables and the mathematics of probability density functions, cumulative dis-
tribution functions, hazard functions, and and quantile functions. The quantile function
discussion extends into the algebra of quantile functions, and examples of how this alge-
bra can be used as a model building tool to create alternative distributions are provided.
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Figure 2.12. Box plot of the distribution of annual peak streamflow for U.S. Geological Survey
streamflow-gaging station 05405000 Baraboo River near Baraboo, Wisconsin from exam-
ple 2–34

A conceptual review of the relations between nonexceedance and exceedance probabilities
and annual recurrence intervals is made.

A review of the basic summary statistics, namely the product moments of the mean
and standard deviation, sets up more thorough discussion of product moments in Chap-
ter 4. In the summary statistics context, the concept of generation of random variables is
shown. The concept that distributions are simultaneously characterized by moments and
parameters is introduced. If the parameters are chosen so that the product moments of
the distribution match or are equated to the sample product moments, the distribution is
fit by the method of moments. The method of moments is demonstrated by example. An
important component of distributional analysis is visualization of the data, as shown by
empirical distributions developed by plotting positions. Finally, the basic steps of distri-
butional analysis are demonstrated by examples using simulation and observed annual
peak streamflow data involving the method of moments.
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Chapter 3

Order Statistics

In this chapter, I provide discussion concerning a branch of statistics known as order

statistics in which the sorting (ranking) of a random variable or sorting of a sample is of

primary importance. Common statistics, such as the minimum, maximum, and median,

result from ranking from smallest to largest. The study of order statistics however also

includes study of other characteristics of ordered random variables. For purposes here,

the expectation of an order statistic is of special importance because L-moments are fun-

damentally defined and conceptualized as linear combinations of order statistic expec-

tations. Further, special statistics such as the Sen weighted mean and Gini mean dif-

ference are based on ordering and are of historical interest to L-moments. This chapter

appears early in the dissertation because foundational material is provided concerning

the mathematics of L-moments, but readers are not required to thoroughly understand

this chapter in order to perform distributional analysis with L-moment statistics using R.

3.1 Introduction

Asmentioned in Section 1.3, a branch of statistics known as order statistics plays a promi-
nent role in L-moment theory. The study of order statistics is the study of the statistics of
ordered (sorted) random variables and samples. This chapter presents a very brief intro-
duction of order statistics to provide a foundation for later chapters. A comprehensive
exposition on order statistics is provided by David (1981), and an R-oriented approach is
described in various contexts by Baclawski (2008).

The random variableX for a sample of size n when sorted creates the order statistics
ofX :X1:n ≤ X2:n ≤ · · · ≤ Xn:n. The sample order statistics from a random sample are
created by sorting the sample into ascending order: x1:n ≤ x2:n ≤ · · · ≤ xn:n. As will be
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seen, the concept and use of order statistics take into account both the value (magnitude)
and the relative relation (order) to other observations. Barnett (2004, p. 23) reports that

. . . the effects of ordering can be impressive in terms of both what aspects of sam-
ple behavior can be usefully employed and the effectiveness and efficiency of
resulting inferences.

and that

. . . linear combinations of all ordered samples values can provide efficient estima-
tors.

This dissertation will show that the L-moments, which are based on linear combinations
(recalling page 9) of order statistics, do in fact provide effective and efficient estimators of
distributional geometry.

In general, order statistics are already a part of the basic summary statistic repertoire
possessed by most individuals, including nonscientists and nonstatisticians. The mini-
mum and maximum are examples of extreme value order statistics and are defined by
the following notation:

min{Xn} = X1:n (3.1)

max{Xn} = Xn:n (3.2)

The familiar medianX0.50 by convention is

X0.50 =

(X[n/2]:n +X[(n/2)+1]:n)/2 if n is even

X[(n+1)/2]:n if n is odd
(3.3)

and thus clearly is defined in terms of one order statistic in the case of odd sample size or
a linear combination of two order statistics in the case of even sample sizes.

Other order statistics exist and several important interpretations towards the purpose
of this dissertation can be made. Concerning L-moments discussed in Chapter 6, Hosking
(1990, p. 109) and Hosking and Wallis (1997, p. 21) provide an “intuitive” justification for
L-moments and by association the probability-weighted moments (see Chapter 5). The
justification is founded on order statistics:

• The order statisticX1:1 (a single observation) contains information about the location
of the distribution on the real-number line R;
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• For a sample of n = 2, the order statistics areX1:2 (smallest) andX2:2 (largest). For a
highly dispersed distribution, the expected difference betweenX2:2 −X1:2 would be
large, whereas for a tightly dispersed distribution, the difference would be small. The
expected differences between order statistics of an n = 2 sample hence can be used to
express the variability or scale of a distribution; and

• For a sample of n = 3, the order statistics areX1:3 (smallest),X2:3 (median), andX3:3

(largest). For a negatively skewed distribution, the differenceX2:3 − X1:3 would be
larger (more data to the left) thanX3:3 − X2:3. The opposite (more data to the right)
would occur if a distribution were positively skewed.

These interpretations hint towards expression of distribution geometry by select use
of intra-sample differences. In fact, various intra-sample differences can be formulated to
express fundamental and interpretable measures of distribution geometry. Intra-sample
differences are an important link to L-moments, and the link justifies exposition of order
statistics in a stand-alone chapter. Kaigh and Driscoll (1987, p. 25) defined O-statistics
as “smoothed generalizations of order statistics” and provide hints (Kaigh and Driscoll,
1987, eq. 2.4, p. 26) towards L-moments by suggesting that linear combinations of the
order statistics in the previous list and others not listed provide for location, scale, and
“scale-invariant” skewness and kurtosis estimation.

3.1.1 Expectations and Distributions of Order Statistics

A definition regarding order statistics, which will be critically important in the compu-
tation of L-moments in Chapter 6 and probability-weighted moments in Chapter 5, is
the expectation of an order statistic. The expectation is defined in terms of the QDF. The
expectation of an order statistic for the jth largest of r values is defined (David, 1981, p. 33)
in terms of the QDF x(F ) as

E[Xj:n] =
n!

(j − 1)!(n− j)!

∫ 1

0

x(F )× F j−1 × (1− F )n−j dF (3.4)

where the quantity to the left of the integral is

n!

(j − 1)!(n− j)!
= n

(
n− 1

j − 1

)
(3.5)
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where the (a b) notation represents binomial coefficients. The (a b) notation is defined as(
a

b

)
=

a!

(a− b)! b!
for b ≤ a (3.6)

and by convention 0! = 1; eq. (3.6) is an expression for the number of possible combina-
tions of a items taken b at a time. Factorials u! are defined as

u! = u(u− 1)(u− 2) . . . (u− u+ 2)(u− u+ 1) = Γ(u+ 1) (3.7)

For both integer and non-integer u, the factorial can be computed using Γ(u+ 1) where
Γ( ) is the complete gamma function defined in eq. (8.85) on page 244. In R, the gamma()
function is Γ( ) and the lgamma() function is the natural logarithm of Γ( ). The later is
the most often used version in general programming because ratios of factorials of large
u are regularly needed such as in eq. (3.4) or more specifically

n!

(j − 1)!(n− j)!
= exp[log Γ(n+ 1)− log Γ(j)− log Γ(n− j + 1)] (3.8)

The PDF of the Xj:n (jth order statistic of a sample of size n) for a random variable
having CDF F (x) and PDF f(x) is defined (David, 1981, p. 9) as

fj:n(x) =
[F (x)]j−1[1− F (x)]n−jf(x)

B(j, n− j + 1)
(3.9)

whereB(a, b) is the beta function or complete beta function. The beta function is defined
for a, b > 0 as

B(a, b) =

∫ 1

0

F a−1(1− F )b−1 dF =

∫ ∞
0

xa−1

(1 + x)a+b
dx =

Γ(a)Γ(b)

Γ(a+ b)
(3.10)

where Γ(u) is the complete gamma function. A useful relation is(
n

k

)−1
= (n+ k) B(n− k + 1, k + 1) (3.11)

The CDF ofXj:n for a random variable having CDF F (x) and PDF f(x) is defined (David,
1981, p. 8) as

Fj:n(x) =
n∑
i=j

(
n

i

)
[F (x)]i[1− F (x)]n−i (3.12)
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It follows that the expectation of an order statistic is defined respectively in terms of
the CDF and PDF as

E[Xj:n] =

∫ ∞
−∞

xfj:n(x) dx (3.13)

or

E[Xj:n] =

∫∞
−∞[F (x)]j−1[1− F (x)]n−jx f(x) dx

B(j, n− j + 1)
(3.14)

The expectation of an order statistic for a sample of size n = 1 is especially important
because

E[X1:1] =

∫ 1

0

x(F ) dF = µ = arithmetic mean (3.15)

Therefore, the familiar mean can be interpreted thus: The mean is the expected value of a
single observation if one and only one sample is drawn from the distribution.

Hosking (2006) reports from references cited therein that “the expectations of extreme
order statistics characterize a distribution.” In particular, if the expectation of a random
variableX is finite, then the set {E[X1:n:n=1, 2, · · · ]} or {E[Xn:n:n=1, 2, · · · ]} uniquely
determine the distribution. Hosking (2006) reasons that such sets of expectations contain
redundant information. Technically a subset of expectations therefore can be dropped, and
the smaller set is still sufficient to characterize the distribution. This feature of extreme
order statistics is further considered in Chapter 6 on page 122 in the context of distribution
characterization by L-moments.

Using R Using R

Using eq. (3.4), the expected value of the 123rd-ordered (increasing) value of a sample
of size n = 300 is computed for an Exponential distribution in example 3–1 . The ratio
of factorial functions in eq. (3.4) is difficult to compute for large values—judicious use
of the fact that n! = Γ(n + 1) and use of logarithms of the complete Gamma function
Γ(a) suffices. The results of the integration using the Exponential QDF by the qexp()
function and stochastic computation using random variates of the Exponential by the
rexp() function for E[X123:300] are very similar.1

1 The first and second values (the third is from simulation) should seemingly be the same, but a
bug in logic has not been found. The following example that uses j=300 shows that the first and
second values are identical.
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3–1
nsim <- 10000; n <- 300; j <- 123; set.seed(10)
int <- integrate(function(f,n=NULL,j=NULL) {

exp(lgamma(n+1) - lgamma(j) - lgamma(n-j+1)) *
qexp(f) * f^(j-1) * (1-f)^(n-j)

}, lower=0, upper=1, n=n, j=j)

E_integrated <- int$value
E_byfunc <- expect.max.ostat(300, para=vec2par(c(0,1),

type="exp"), pdf=pdfexp, cdf=cdfexp, j=j)
# This function can be used for non maximum too if j provided.

E_stochastic <- mean(replicate(nsim, sort(rexp(n))[j]))

cat(c("RESULTS:", round(E_integrated, digits=3),
"and", round(E_byfunc, digits=3),
"and", round(E_stochastic, digits=3), "\n"))

RESULTS: 0.526 and 0.543 and 0.526

Finally, changing j=123 in example 3–1 to j=300 for the maximum order statis-
tic, produces RESULTS: 6.283 and 6.283 and 6.297. These values are also
similar. J

3.1.2 Distributions of Order Statistic Extrema

The extrema X1:n and Xn:n are of special interest in many practical problems of distri-
butional analysis. Consider the sample maximum of random variableX having CDF of
F (x) = Pr[Xn:n ≤ x], if Xn:n ≤ x, then all xi ≤ x for i = 1, 2, · · · , n, it can be shown
for the sample maximum that

Fn(x) = Pr[X ≤ x]n = [F (x)]n (3.16)

Similarly, it can be shown for the sample minimum that

F1(x) = Pr[X > x]n = [1− F (x)]n (3.17)

Durrans (1992) considers eq. (3.16) in more detail by exploring the possibility of frac-
tional order of the exponent by suggesting the substitution of n (integer) for γ, which is
real-valued (γ > 0). Durrans (1992, p. 1650) comments that “an attractive feature of dis-
tributions of fractional order statistics is the thickening and thinning of the [distribution]
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tails as the parameter γ is varied.” Further consideration of fractional order statistics is
not made in this dissertation.

Using the arguments producing eqs. (3.16) and (3.17) with a focus on the QDF, Gilchrist
(2000, p. 85) provides

xn:n(F ) = x(F 1/n) (3.18)

x1:n(F ) = x(1− (1− F )1/n) (3.19)

for the QDF of themaximum andminimum, respectively. Gilchrist (2000, p. 85) comments
that, at least for xn:n, that “the quantile function of the largest observation is thus found
from the original quantile function in the simplest of calculations.”

For the general computation of the distribution of non-extrema order statistics, the com-
putations are more difficult. Gilchrist (2000, p. 86) shows that the QDF of the distribution
of the jth order statistic of a sample of size n is

xj:n(F ) = x[B(−1)(F, j, n− j + 1)] (3.20)

where xj:n(F ) is to be read as “the QDF of the jth order statistic for a sample of size n
given by nonexceedance probabilityF .” The function B(−1)(F, a, b) is the QDF of the Beta
distribution—the (−1) notation represents the inverse of the CDF, which is of course a
QDF. The PDF of the Beta distribution is

f(x) =
xα−1(1− x)β−1

B(α, β)
(3.21)

where α and β are parameters and B(α, β) is the beta function of eq. (3.10). The first two
product moments (mean and variance) of the Beta distribution are

µ =
α

α + β
(3.22)

σ2 =
αβ

α + β + 1
(3.23)

It follows that the QDF for an F and sample size of n of the order statistic extrema are

x1:n(F ) = x[B(−1)(F, 1, n)] and xn:n(F ) = x[B(−1)(F, n, 1)] (3.24)

for the minimumX1:n and maximumXn:n, respectively.
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Using R Using R

In the context of eqs. (3.16) and (3.17), the expectations of extrema for the Exponential
distribution are stochastically computed in example 3–2 using the min() and max()

functions. The random variates from the Exponential are computed by the rexp() func-
tion. The example begins by setting the sample size n = 4, the size of a simulation run
in nsim, and finally, the scale parameter (note that R uses a rate expression for the dis-
persion parameter) of the Exponential distribution is set to 1,000. (A location parameter
of 0 is implied.) The example reports 1000, 1500, and 500 for the respective mean and
expectations of the maximum and minimum. (It is known, as shown in Section 7.2.2 in
eq. (7.17), that the mean of this Exponential distribution is 1,000.)

3–2
n <- 4; nsim <- 200000
s <- 1/1000 # inverse of scale parameter = 1000
# Expectation of Expectation of Exponential Distribution
mean(replicate(nsim, mean(rexp(n, rate=s))))
[1] 1000.262

# Expectation of Maximum from Exponential Distribution
mean(replicate(nsim, max(rexp(n, rate=s))))
[1] 1504.404

# Expectation of Minimum from Exponential Distribution
mean(replicate(nsim, min(rexp(n, rate=s))))
[1] 499.6178

The demonstration continues in example 3–3 with the stochastic computation of the
expected values of the maximum and minimum by eqs. (3.16) and (3.17). An interesting
consideration of these equations is that sorting a vector of extrema distributed values as for
themaximumandminimumcomputation is not needed. (The quantiles of the Exponential
are computed by the qexp() function; whereas, Uniform variates are computed by the
runif() function.) The output of examples 3–2 and 3–3 are consistent with each other.

3–3
# Expectation of Maximum from Exponential Distribution
mean(qexp(runif(nsim)^(1/n), rate=s))
[1] 1497.001
# Expectation of Minimum from Exponential Distribution
mean(qexp(1 - runif(nsim)^(1/n), rate=s))
[1] 501.1628

J
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The two previous examples imply that eqs. (3.16) and (3.17) provide a more efficient
means of computing the distribution of extrema because sorting is computationally expen-
sive. The system.time() function in example 3–4 measures the relative time to com-
pute the expectation of a minimum value of a sample of size n = 4. The example shows
that use of eq. (3.17) is more than 35 times faster for the author’s computer.

3–4
system.time(mean(replicate(nsim, min(qexp(runif(n), rate=s)))))

user system elapsed
3.337 0.047 3.502

system.time(mean(qexp(1 - runif(nsim)^(1/n), rate=s)))
user system elapsed
0.059 0.006 0.064

J

The distributions of individual order statistics in eq. (3.20) are easily demonstrated.
Example 3–5 defines the qua.ostat() function to compute the quantiles for a given
order statistic. The arguments f and para to the function are the Fj:n and lmomco param-
eter list (see page 163 and ex. 7–1 ), respectively. The parameter list is a data struc-
ture specific to the lmomco package. The other two arguments are self explanatory. The
qbeta() function is used to compute quantiles of the Beta distribution. Finally, the
par2qua() function dispatches the para parameter list to the appropriate distribution
with F =betainv.F.

3–5
"qua.ostat" <-
function(f,j,n,para) {

betainv.F <- qbeta(f,j,n-j+1) # compute nonexceedance prob.
return(par2qua(betainv.F,para))

}
# Now demonstrate usage of the qua.ostat() function
PARgpa <- vec2par(c(100,500,0.5), type="gpa") # make parameters
n <- 20; j <- 15; F <- 0.5 # sample size, rank, and nonexceedance
ostat <- qua.ostat(F,j,n,PARgpa)
print(ostat)
[1] 571.9805

After defining thequa.ostat() function by thefunction() “function,” the example
continues by specifying an lmomco parameter list for the Generalized Pareto distribution
into variable PARgpa using vec2par() through the type="gpa" argument. A sample
size ofn = 20 is set, and themedian of the distribution of the 15th-order statistic for such a

69



Texas Tech University,William H. Asquith, May 2011

sample is computed. The example reports x15:20(0.5) = 572 or the “50th percentile of the
15th value of a sample of size 20.” The qua.ostat() function actually is incorporated
into the lmomco package. The function is shown here as an example of syntax brevity by
which eq. (3.20) can be implemented using the vectorized nature of the R language. J

3.2 L-estimators—Special Statistics Related to L-moments

Jurečková and Picek (2006, pp. 63–70) summarize linear statistical estimators known as
L-estimators and Serfling (1980, pp. 262–291) considers the asymptotic (very large sample)
properties of L-estimators. L-estimators Tn for sample of size n are based on the order
statistics and are expressed in a general form as

Tn =
n∑
i=1

ci:nh(Xi:n) +
n∑
i=1

djh
?(X[npj+1]:n) (3.25)

whereXi:n are the order statistics, c1:n, · · · , cn:n and d1, · · · , dn are given coefficients or
weight factors, 0 < p1 < · · · < pk < 1, and h(a) and h?(a) are given functions for
argument a. The coefficients ci:n for 1 ≤ i ≤ n are generated by a bounded weight
function J(a) with a domain [0, 1] with a range of the real-number line R by either

ci:n =

∫ i/n

(i−1)/n
J(s) ds (3.26)

or approximately

ci:n =
J(i/[n+ 1])

n
(3.27)

The quantity to the left of the + in eq. (3.25) uses all of the order statistics whereas
the quantity to the right of the + is a linear combination of a finite number of order
statistics (quantiles). L-estimators generally have the form of either quantity, but not both.
Estimators defined by the left quantity are known as type I and those of the right are
known as type II. L-estimators of type I are discussed by Huber (1981, p. 55) and Barnett
and Lewis (1995, p. 146).

The simplest example suggested by Jurečková and Picek (2006, p. 64) of an L-estimator
of distribution location are the sample median and the midrange, in which the later is
defined as
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Tn =
X1:n +Xn:n

2
(3.28)

A simple L-estimator of distribution scale is the range or

Rn = Xn:n −X1:n = largest− smallest (3.29)

Twoparticularly interestingL-estimators that have immediate connection to L-moments
are the Sen weighted mean and Gini mean difference statistics. These two statistics are
described in the sections that follow.

3.2.1 Sen Weighted Mean

A special L-estimator of distribution location that is based on order statistics is the Sen
weighted mean (Sen, 1964) or the quantity Sn,k. The Sn,k is a robust estimator (Jurečková
and Picek, 2006, p. 69) of the mean of a distribution and is defined as

Sn,k =

(
n

2k + 1

)−1 n∑
i=1

(
i− 1

k

)(
n− i
k

)
Xi:n (3.30)

whereXi:n are the order statistics and k is a weighting or trimming parameter. A sample
version Ŝn,k results whenXi:n are replaced by their sample counterparts xi:n. Readers are
asked to note that Sn,0 = µ = Xn or the arithmetic mean, and Sn,k is the median if either
n is even and k = (n/2)− 1 or n is odd and k = (n− 1)/2.

Using R Using R

The lmomco package provides support for Ŝn,k through the sen.mean() function,
which is demonstrated in example 3–6 . In the example, some fake data are set into fake.
dat, and a “Sen” object sen is created. A list sen is returned by the sen.mean() function.

3–6
fake.dat <- c(123, 34, 4, 654, 37, 78)

# PART 1, sample means
sen <- sen.mean(fake.dat)
print(sen)
$sen
[1] 155
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$source
[1] "sen.mean"

mean(fake.dat)
[1] 155

# PART 2, sample medians
sen <- sen.mean(fake.dat, k=(length(fake.dat)/2) - 1)
print(sen)
$sen
[1] 57.5
$source
[1] "sen.mean"

median(fake.dat)
[1] 57.5

The first part of the example shows that by default Ŝn,0 = µ, which is 155 for the example.
The second part shows that k can be chosen to yield the median, which is 57.5 for the
example. J

Finally, Sn,k is equivalent to the first symmetrically trimmed TL-moment (that will
be formally introduced as λ(k)

1 in Section 6.4). The numerical equivalency Sn,k = λ(k)
1 is

demonstrated in example 3–7 by computing a two sample (two data point) trimming
from each tail (side) of a Normal distribution having a µ = 100 and σ = 1 or in moment-
order listing: NOR(100, 1). The magnitude of the difference between Ŝn,k and the first
TL-moment for symmetrical trimming k should be zero and is shown in the last line.

3–7
fake.dat <- rnorm(20, mean=100) # generate a random sample
lmr <- TLmoms(fake.dat, trim=2) # compute trimmed L-moments
sen <- sen.mean(fake.dat, k=2) # compute Sen mean
the.diff <- abs(lmr$lambdas[1] - sen$sen)
print(the.diff) # should be zero
[1] 0

J

Foreshadowing Section 4.1.1, but here providing an informative example in the context
of the trimmedmean, in example 3–8 , themean square errors (MSE) of the sen.mean(),
trim.mean() (Rizzo, 2008, p. 156), and median() estimators are computed and com-
pared the three errors to those reported by Rizzo (2008, pp. 156–157). The example begins
by defining a trim.mean() function and using the same sample size n = 20 as used by
Rizzo. For this particular example, the set.seed() function is used to set a seed for the
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random number generator in current use by R. By setting the seed, users for this example
should precisely reproduce the output shown.2

3–8
"trim.mean" <- function(x) { # mimicking Rizzo (2008)

x <- sort(x); n <- length(x)
return(sum(x[2:(n-1)])/(n-2))

}
n <- 20; nsim <- 75000
set.seed(1000) # set the seed for the random number generator

S1 <- replicate(nsim, sen.mean(rnorm(n))$sen)
sam.biasvar(S1,0, verbose=FALSE)$mse
[1] 0.04990509

# Sampling statistics of the trim.mean()
# Rizzo (2008) p.156 reports mse=0.0518
S2 <- replicate(nsim, trim.mean(rnorm(n)))
sam.biasvar(S2,0, verbose=FALSE)$mse
[1] 0.05124172

# Rizzo (2008) p.157 reports mse=0.0748
S3 <- replicate(nsim, median(rnorm(n)))
sam.biasvar(S3,0, verbose=FALSE)$mse
[1] 0.07363024

The example continues using the sam.biasvar() function, which is created in
example 4–1 , to perform nsim simulations of the sen.mean(), trim.mean(), and
median() estimates of the standard Normal distribution. The results in example 3–8

show numerical equivalency between the values reported by Rizzo. Further, the results
show that the equivalent algorithms for sen.mean() and trim.mean() have smaller
mean square errors than the familiar median. This is a natural consequence of the median
using far less numerical information contained in the sample than used by the trimmed
mean. J

3.2.2 Gini Mean Difference

Another special L-estimator of distribution scale (dispersion, spread, variability) that is
based on order statistics is theGini mean difference (Gini, 1912), which is closely related
2 Note that the general practice in this dissertation is to be independent of specific seeds so users
should expect numerically different, but stochastically similar results for other examples herein.

73



Texas Tech University,William H. Asquith, May 2011

to the second L-moment λ2. The Gini mean difference G (Serfling, 1980, p. 263) is a robust
estimator (Jurečková and Picek, 2006, p. 64) is defined as respective population G and
sample Ĝ statistics as

G = E[X2:2 −X1:2] = E[X2:2]− E[X1:2] (3.31)

and

Ĝ =
2

n(n− 1)

n∑
i=1

(2i− n− 1)xi:n (3.32)

where Xi:n are the order statistics, xi:n are the sample order statistics, and n ≥ 2. The
statistic G is a measure of the expected difference between two randomly drawn values
from a distribution. Hence, the statistic is a measure of distribution scale or spread (see
second justification in the list starting on page 63).

The Gini mean difference is considered by Barnett and Lewis (1995, p. 168). However,
David (1981, p. 192) considers G in more detail and reports that, although the statistic is
named after Gini (1912), G was “already studied by Helmert in 1876 [(Helmert, 1876)3]
and not brand new then!” (Exclamation point is David’s.) Hald (1998, p. 644) provides
historical discussion of Helmert’s article.

Using R Using R

The lmomco package provides support for Ĝ through the gini.mean.diff() function,
which is demonstrated in example 3–9 . In the example, a fake data set is set into fake.
dat, a “Gini” object is created, and assigned to variable gini. A list gini is returned. The
Ĝ statistic is listed in gini$gini, and the second sample L-moment (λ̂2, see Chapter 6)
is listed in gini$L2. Thus, Ĝ = 237.

3–9
fake.dat <- c(123,34,4,654,37,78) # fake data
gini <- gini.mean.diff(fake.dat) # from lmomco
str(gini) # output the list structure
List of 3
$ gini : num 237
$ L2 : num 119
$ source: chr "gini.mean.diff"

J

3 Astronomische Nachrichten is the oldest astronomical journal of the world that is still being
published (http://www.aip.de/AN/).
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By definition, G = 2λ2 where λ2 is the second L-moment. Example 3–10 computes the
sample L-moments using the lmoms() function of lmomco and demonstrates the numer-
ical equivalency of G = 2λ2 by the print() function outputting zero in the last line of
the example.

3–10
lmr <- lmoms(fake.dat) # compute L-moments from lmomco
print(abs(gini$gini/2 - lmr$lambdas[2])) # should be zero
[1] 0

J

After reporting, within discussion of order-based inference, that “linear functions of
the ordered sample values can form not only useful estimators but even optimal ones,”
Barnett (2004, p. 27) goes on to report that the quantity

V =
1.7725

n(n− 1)

n∑
i=1

(2i− n− 1)Xi:n = Ĝ (3.33)

is “more easily calculated than the unbiased sample variance [σ̂2], and for normal X it
is about 98 [percent] efficient relative to [σ̂2] for all sample sizes.” Barnett apparently
has made a mistake on the units—the units of V are not squared like those of variance.
Therefore, a conclusion is made that V 2 = Ĝ2 is what Barnett means. Emphasis is needed
that these two statistics are both variance estimators. (The concept of efficiency is formally
described in Section 4.1.1, and the sample variance σ̂2 is defined in eq. (4.18).)

There are many specific connections of eq. (3.33) to this dissertation, which are particu-
larly interesting to document, because Barnett (2004) makes no reference to L-moments,
no reference to the Gini mean difference, and a solitary reference to L-estimators (Barnett,
2004, p. 122). The connections are:

• Eq. (3.33) is very similar to eq. (3.32): 1.7725× Ĝ/2 = V ;

• The Gini mean difference is related to the second L-moment λ2 by G = 2λ2. Thus, λ2
is related to V ;

• The sample standard deviation is σ̂ =
√
σ̂2;

• In terms of L-moments, the standard deviation of the Normal distribution is σ = λ2
√
π

by eq. (7.10); and

• The value
√
π = 1.772454 . . ., which has an obvious connection to eq. (3.33).
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Barnett (2004) asserts that the “efficiency” of V is “about 98 percent” for all sample
sizes. Assuming that relative efficiency4 RE is meant, R is used to test this claim. In exam-
ple 3–11 , the variance of V and the familiar definition σ̂2 by the var() function are
computed for a large sample size of n = 2,000 for a very large number of simulations.

3–11
n <- 2000 # sample size
nsim <- 200000 # no. of simultions
"Barnett" <- function(n) {

gini <- gini.mean.diff(rnorm(n))$gini
return((sqrt(pi)*gini/2)^2)

}
GiniVar <- var(replicate(nsim, Barnett(n) ))
ClassicVar <- var(replicate(nsim, var(rnorm(n))))
RE <- ClassicVar/GiniVar # relative efficiency

print(RE)
[1] 0.9738433
# Barnett (2004, p. 27) reports 98 percent.

The example estimates that RE ≈ 0.97, which is acceptably close to the “about 98

percent” value reported by Barnett. Therefore, the computed value in example 3–11 is
consistent with Barnett’s value. Barnett also states that this RE holds for all sample sizes.
This conclusion is tested in example 3–12 for a sample size of n = 10.

3–12
n <- 10
GiniVar <- var( replicate(nsim, Barnett(n) ))
ClassicVar <- var( replicate(nsim, var(rnorm(n)) ))
RE <- ClassicVar/GiniVar # relative efficiency

print(RE)
[1] 0.8752343

Example 3–12 estimates RE ≈ 0.88 for n = 10, which is clearly at odds with Bar-
nett’s statement—RE is in fact substantially related to sample size. Another experiment
shows that RE ≈ 0.93 for n = 20. Finally, the performance (bias) of the Gini mean differ-
ence (equivalently, the second L-moment) compared to the sample standard deviation is
explored in Section 7.2.1. J

4 Relatively efficiency RE is formally defined in eq. (4.7).
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3.3 Summary

In this chapter, order statistics are formally introduced, and 12 examples are provided.
The order statistics are based on ordering or sorting the random variable or the sample
data. The order statistics are a fascinating class of statistics, which are relatively obscure to
nonstatisticians, yet ironically are within the natural experience of virtually all persons—
for example the minimum and maximum and to a lesser degree the median. The primary
results shown in the chapter are the expression for the expectation of an order statistic, the
Senweightedmean, and the Ginimean difference. The expectation of an order statistic has
great importance for the remainder of this dissertation. Foreshadowing, the L-moments
and TL-moments of Chapter 6, the theoretical and numerical connections between these
and both the Sen weighted mean and Gini mean difference are shown.
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Chapter 4

Product Moments

In this chapter, I present generally salient background context for the remainder of the

dissertation. The chapter primarily focuses on the definitions and sample counterparts

of the product moments. Because the product moments are expected to be familiar to

many readers, this chapter serves as a relatively independent component of the larger

dissertation and establishes a basic structure for the parallelism of the two chapters on

probability-weighted moments and L-moments. The topic of sampling bias and sam-

pling variance very likely is new material to readers lacking a statistical background,

but the topics are important to understand for the discussions that justify the author’s

preference towards use of L-moment statistics. Additionally, the discussion of bias and

boundedness as a function of sample size of some product moments is particularly influ-

ential albeit not well known. Direct use of the results in this chapter is not expected for

purposes of distributional analysis with L-moment statistics using R.

4.1 Introduction

Data are distributed, and data are acquired through sampling (ideally substantial sam-
pling) of a random variable. One of the challenges before the practitioner of distributional
analysis is the reduction of a sample of many numbers to geometric characterization of a
distribution by a few “more salient” numbers. This reduction can be made by computing
percentiles such as x0.10, x0.25, x0.50, x0.75, and x0.90 for the 10th, 25th, 50th, 75th, and
90th percentiles, respectively; by computing other distribution metrics such as the sam-
ple range; or by computing the statistical moments (a generic meaning of the term). The
moments of a distribution are particularly useful because specific mathematical opera-
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tions are readily performed to compute moments on either distribution functions or their
samples.

Moments are statistics that quantify different components or geometric characteristics
of a distribution. For example, the arithmetic mean locates the distribution on the real-
number lineR and therefore is an expression of central tendency, and the standard devia-
tion describes the variability or spread alongR. These are but twowell-known examples of
a moment type known as the product moments. There are, however, many different ways
that moments can be defined and computed. As seen throughout this dissertation, there
also are probability-weightedmoments, L-moments, trimmed L-moments, and other vari-
ations.

The product moments such as the mean, standard deviation, skew, and kurtosis are
familiar statistics—the others listed at the end of the previous paragraph are less so. The
product moments are used in elementary examples in Chapter 2. In contrast, formal defi-
nitions and some experiments with their sampling properties are provided in this chapter.
Before product moments are introduced, a review of some statistical concepts and termi-
nology is needed. The review provides background for some of the examples used in this
chapter and elsewhere in this dissertation.

4.1.1 Sampling Bias and Sampling Variance

The concepts of sampling bias and sampling variance (Stedinger and others, 1993,
chap. 18, p. 10) involve the accuracy and precision of statistical estimation. Because dis-
tributional analysis inherently involves finite samples, the concepts of sampling bias and
variance are important. R-oriented treatments of these and related concepts are provided
by Rizzo (2008, pp. 37–38) and Ugarte and others (2008, pp. 245–255). For a given circum-
stance perhaps statistics such asmoments, percentiles, or distribution parameters are to be
estimated. Whichever is the case, consider the estimated statistic Θ̂ as a random variable
with a true value that is denoted as Θ. Values for Θ̂ are dependent on the sampled data.
The bias in the estimation of Θ̂ is defined as the difference between the expectation of the
estimate minus the true value or

Bias[Θ̂] = E[Θ̂]−Θ (4.1)
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The sample-to-sample variability (or sampling variance) of a statistic is expressed by root
mean square error, which is defined as

RMSE[Θ̂] =

√
E[(Θ̂−Θ)2] (4.2)

and upon expansion the error is split into two parts

RMSE[Θ̂] =

√
Bias[Θ̂]2 + E[(Θ̂− E[Θ̂])2] (4.3)

or
RMSE[Θ̂] =

√
Bias[Θ̂]2 + Var(Θ̂) (4.4)

The square of the RMSE is known as themean square error (MSE). Rizzo (2008, p. 155)
reports for MSE, but shown here as RMSE, that

RMSE[Θ̂] =

√√√√ 1

m

m∑
j=1

(Θ̂(j) −Θ)2 (4.5)

where Θ(j) is the estimator for the jth sample of size n andm is the number of simulation
runs of samples of size n.

Bias[Θ̂], Var[Θ̂], and RMSE[Θ̂] are useful measures of statistical performance. They
are performance measures because the sampling bias and sampling variance describe the
accuracy and precision, respectively, of the given estimator.

If Bias[Θ̂] = 0, then the estimator is said to be unbiased. For an unbiased estimator,
the sampling variance will be equal to the variance or Var(Θ̂) of the statistic. These two
measures of statistical performance can exhibit considerable dependency on sample sizen.

Amongst an ensemble of estimators, the estimator with the smallest RMSE[Θ̂] or
MSE[Θ̂] is said to be the most statistically efficient. If an estimator is resistant to large
changes because of the presence of outliers or otherwise influential data values, then the
estimator is said to be robust. The relative efficiency of two estimators is

RE[Θ̂1, Θ̂2] =
MSE[Θ̂2]

MSE[Θ̂1]
(4.6)

and when two estimators are unbiased, then the relative efficiency can be defined as
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RE[Θ̂1, Θ̂2] =
Var[Θ̂2]

Var[Θ̂1]
(4.7)

Relative efficiency is important in assessing or otherwise comparing the performance of
two estimators. Relative efficiency saturates the literature of statisticians exploring the
performance of estimators but has limited role in this dissertation.

Using R Using R

Sampling bias and sampling variance are used as metrics to evaluate and compare the
properties of product moments, L-moments, and other statistics. For the sake of brevity,
the R functions mean(), sd(), and occasionally summary() will be used to compute
statistics of the difference Θ̂ − Θ. However, an opportunity is taken in this Using R to
delve into statistics of the difference Θ̂−Θ in more detail.

In example 4–1 , the function afunc() is defined as a high-level interface to the dis-
tribution of choice. For the example, the random variates for the standard Normal dis-
tribution are accessed using the rnorm() function. This style of programming is shown
in order to make extension to non-standard R distibutions easier, and such a program-
ming practice is known as abstraction. The function sam.biasvar() is defined next to
compute eqs. (4.1) and (4.4) as well as Var[Θ̂].

4–1
MN <- 0; SD <- 1 # parameters of standard normal
# Define a separate function to implement a distribution
"afunc" <- function(n,mean,sd) {

return(rnorm(n, mean=mean, sd=sd))
}
nsim <- 100000; n <- 10 # no. simulations and sample size to sim.

# Define function to compute sampling statistics
"sam.biasvar" <- function(h,s, verbose=TRUE, digits=5) {

b <- mean(h) - s # solve for the bias

mse <- mean((h - s)^2) # mean square error
rmse <- sqrt(mse) # root MSE

vh <- sqrt(mean((h - mean(h))^2)) # sqrt(variance
# of the statistic), which lacks a n-1 division

nv <- sqrt(rmse^2 - b^2) # alternative estimation
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if(verbose) {
cat(c("Bias (B) = ",round(b, digits=digits), "\n",

"MSE(h,s) = ",round(mse, digits=digits), "\n",
"RMSE(h,s) = ",round(rmse,digits=digits), "\n",
"sqrt(Var(h)) = ",round(vh, digits=digits), "\n",
"sqrt(RMSE^2-B^2) = ",round(nv, digits=digits), "\n"),

sep="")
}
return(list(bias=b, mse=mse, rmse=rmse, sd=vh))

}

The sam.biasvar() function is demonstrated in example 4–2 for a sample of size
n = 10 for a large simulation size nsim=100000. First, the Rmean list is generated to hold
the sampling statistics of the mean() function, and second, the Rmedn list is generated
to hold the sampling statistics of the median function. The reported biases are near zero
because the mean and median are both unbiased estimators.

4–2
# Sampling statistics of the mean()
Rmean <- sam.biasvar(replicate(nsim,mean(afunc(n,MN,SD))),MN)
Bias (B) = -0.00158
MSE(h,s) = 0.10058
RMSE(h,s) = 0.31714
sqrt(Var(h)) = 0.31713
sqrt(RMSE^2-B^2) = 0.31713
# Report the theoretical to show equivalence
cat(c("Theoretical = ",

round(SD/sqrt(n), digits=3), "\n"), sep="")
Theoretical = 0.316

# Sampling statistics of the median()
Rmedn <- sam.biasvar(replicate(nsim,median(afunc(n,MN,SD))),MN)
Bias (B) = 0.00132
MSE(h,s) = 0.13717
RMSE(h,s) = 0.37036
sqrt(Var(h)) = 0.37036
sqrt(RMSE^2-B^2) = 0.37036

RE <- (Rmean$sd/Rmedn$sd)^2 # RE^{mean}_{median} in LaTeX
cat(c("Relative efficiency = ",

round(RE,digits=3), "\n"), sep="")
Relative efficiency = 0.733

A natural followup question concerning the mean and the median is asked. Which has
the smaller sampling variance? The endof example 4–2 reports that theRE[mean,median]

≈ 0.73, which is less than unity so the conclusion is that the arithmetic mean has a smaller
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sampling variance than the median for at least the Normal distribution as used here.
Finally, a previous demonstration of MSE computation is made for a trimmed mean and
the median using sam.biasvar() in example 3–8 . J

4.2 Product Moments—Definitions and Math

The product moments are formally defined in this section and are separately introduced
as theoretical and sample counterparts.

4.2.1 Theoretical Product Moments

The theoretical product moments of random variable X are defined by centering dif-
ferences on the mean µ. These product moments also have been historically termed the
central product moments because second- and higher-order product moments are based
on differences from the mean. The first product moment is the mean, and as previously
stated, the mean measures the location of the distribution on the real-number line R. The
mean is defined as

µ = E[X] (4.8)

where E[X] is the expectation ofX having PDF f(x) or

E[X] =

∫ ∞
−∞

x f(x) dx (4.9)

Higher-order product moments are defined in terms of expectations of powers of differ-
ences from µ

Mr = E[(X − µ)r] for r ≥ 2 (4.10)

and in integral form

E[(X − µ)r] =

∫ ∞
−∞

(x− µ)r f(x) dx (4.11)

The quantityM2 is known as the variance of the distribution,which is familiarlywritten
as σ2. An often useful measure is the standard deviation σ or

σ =
√
σ2 (4.12)
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because σ has the same units as µ. The σ also is useful because the magnitude of the
number is more similar to the µ than is σ2 and similar scientific notation can be used in
written communication when needed.

It is often convenient to remove dimension from the higher product moments for r ≥ 2

and form the product moment ratios. In particular, the common ratios are coefficient
of variation CV , skew G, and kurtosis K of a distribution and are defined as the three
dimensionless quantities

CV = σ/µ = coefficient of variation (4.13)

G = M3/M
3/2
2 = skew (4.14)

K = M4/M
2
2 = kurtosis (4.15)

It is typical for the term “ratio” to be dropped in reference to CV ,G, andK , and refer
to these three statistics as product moments. This practice will generally be adhered to
here.

4.2.2 Sample Product Moments

The sample product moments for a random sample x1, x2, · · · , xn are ubiquitous sample
statistics throughout all branches of statistics, science and engineering, and society. The
samplemean µ̂ is by far themost common and is taught to students even before adulthood
and is computed by

µ̂ =
1

n

n∑
i=1

xi (4.16)

and the higher product moments are computed by

M r =
1

n

n∑
i=1

(xi − µ̂)r for r ≥ 2 (4.17)

It is important to emphasize that these two statistics are only estimates of the true under-
lying and generally unknown values µ andMr.

TheM r unfortunately are biased and in practice so-called unbiased estimators are used
instead. An unbiased estimator of the sample variance σ̂2 is
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σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2 (4.18)

and note the division by n− 1 instead of n as seen for the theoretical definition (M2). By
convention, the sample standard deviation is

σ̂ =
√
σ̂2 (4.19)

and the sample coefficient of variation is ĈV = σ̂/µ̂.

Although σ̂2 is an unbiased estimator of variance,
√
σ̂2, as demonstrated in this chapter,

paradoxically it is not an unbiased estimator of σ. However,
√
σ̂2 is in common use as

exemplified by the sd() function of R and perhaps all other widely available statistical
and spreadsheet programs. An unbiased estimator of σ is slightly more complicated. The
uniformly-minimum variance unbiased estimator of σ (David, 1981, p. 185) is

σ̂′ =
Γ[(n− 1)/2]

Γ(n/2)
√

2

√√√√ n∑
i=1

(xi − µ̂)2 (4.20)

where Γ(a) is the complete gamma function that is shown in eq. (8.85) and is obtained by
the gamma() function.1 The σ̂′ estimator of σ will be compared to σ̂ by example in this
chapter.

The sample variance can be written in an unusual way based on sample order statis-
tics. As given by Jones (2004, p. 99) after Yatracos (1998), two expressions for the sample
variance are

σ̃2 =
2

n2

n−1∑
i=1

i(n− i)(x{i,i+1} − x{1,i})(x[i+1:n] − x[i:n]) (4.21)

σ̃2 =
2

n2

n−1∑
i=1

i(n− i)(x{i+1,n} − x{i,i+1})(x[i+1:n] − x[i:n]) (4.22)

where σ̃2 is the sample variance, x[i:n] are the usual sample order statistics, and x{j,k} for
j ≤ k is themean of x[j:n], . . . , x[k:n]. Numerical experiments, which are not reported here,

1 Actually the computation of the gamma() function for large arguments—sample sizes in
the case here—is problematic. The computationally preferred technique is to use logarithms:
exp(lgamma((n-1)/2) - lgamma(n/2)) (see eq. (3.8)). This technique is used in the
pmoms() function of lmomco.
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indicate that the two expressions yield numerically equivalent values for σ̃2. A function2

implementing the first expression for σ̃ (standard deviation) is shown in example 4–3 .
Numerical experiments suggest that σ̃ is about−1 in the fifth significant figure less than
σ̂ of eq. (4.19).

4–3
"ostat.sd" <- function(x) {

x <- sort(x); n <- length(x)
tmp <- sapply(1:(n-1),

function(i) { ip1 <- i + 1
return(i*(n-i)*(mean(x[i:ip1]) - mean(x[1:i]))*

(x[ip1] - x[i])) })
return(sqrt(2/n^2*sum(tmp)))

}

Continuing with the higher product moments, a nearly unbiased estimator of sample
skew Ĝ is

Ĝ =
M3

σ̂3
× n2

(n− 1)(n− 2)
(4.23)

A nearly unbiased estimator of sample kurtosis K̂ is

K̂ =
1

σ̂4
× n2

(n− 2)(n− 3)
×
[(

n+ 1

n− 1

)
M4 − 3M2

2
]

+ 3 (4.24)

and care should be exercised with K̂ because its definition can vary between software
packages—consult program documentation for further details.

As discussed throughout Hosking and Wallis (1997) and numerous other authors, as
well as generally well known among advanced practitioners, the estimators of the product
moments havemany undesirable properties (Gilchrist, 2000, p. 197) under departure from
distribution symmetry.

For example, Hosking andWallis (1997, p. 18) conclude that inferences based on sample
product moments from skewed “distributions are likely to be very unreliable,” and argue
that L-moments provide “a more satisfactory” means of distribution characterization. In
particular, L-moments might be preferable to the product moments for characterization
of distribution shape as advocated by Hosking (1992) and Royston (1992). A particularly
influential, yet succinct discussion, of the weaknesses of sample product moments in a
hydrologic context is provided by Wallis and others (1974). A guide to some sampling

2 The function (or method) is not an efficient means to compute the standard deviation.
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properties of product moments through numerical experiments is provided in the next
section.

4.3 Some Sampling Properties of Product Moments

In this section, a topical exploration of the product moments and some of their sampling
properties is made using built-in R functions, direct computation, and the pmoms() func-
tion. The pmoms() function was explicitly written and included in the lmomco package
to facilitate comparisons between product and L-moments. Examples for computation of
the sample product moments are shown and are presented in several similar constructs
(code parallelism) to demonstrate graphically or numerically the sampling properties of
bias and boundedness.

4.3.1 The Mean, Standard Deviation, and Coefficient of Variation

The mean µ and standard deviation σ are for good reason perhaps the most popular
statistics of samples. The µ is a measure of the location of the data, and σ is a measure of
the variation of the data aboutµ. The dimensionlessCV can be useful in some applications
because it is an expression of relative variability or variation that often is independent of
the scale of many phenomena.

Using R Using R

Example 4–4 demonstrates the computation of µ̂, σ̂, and ĈV for a small, hand-made
data set in fake.dat using the mean() and sd() functions. The cat() function con-
catenates and prints each element of a list. The c() function is used to build this list. For
more attractive output, the round() function is used to round to selected decimal places.

4–4
fake.dat <- c(123, 546, 345.2, 12, 875, 321, 90, 800)
mu <- mean(fake.dat); sig <- sd(fake.dat); cv <- sig/mu
cat(c(round(mu, digits=2), round(sig, digits=2),

round(cv, digits=3), "\n"))
389.02 324.83 0.835
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The example reports all three values in the indicated order: µ̂ = 389.02, σ̂ = 324.83, and
ĈV = 0.835. J

4.3.2 Bias of Standard Deviation

The sample estimator of standard deviation σ̂ computationally is simple. The division by
n in the computation of the µ̂ seems intuitively reasonable, but why is there the (n− 1)

term in the computation of σ̂2 and what is the purpose of the term?

Does the (n− 1) term mean that we do not compute the average (straight division by
n) square deviation? Yes, it does. Speaking frankly, in the author’s first college statistics
course as a student (an introductory undergraduate course in Mechanical Engineering),
the students were simply told something like “you give up a degree of freedom because
the mean itself requires estimation,” and no other discussion is recalled. Ok—but what
does “degree of freedom” mean?

The author was unsatisfied with the paraphrased answer. Many years after that, during
the study (by necessity) of L-moments, the concept of sample statistics as estimators of
unknown population values was made manifest. This dissertation is a result of a legacy
of deep reflection and insatiable curiosity resulting from that first statistics course.

The message to convey is that individual estimators have their own unique statistical
properties.With a simple n term in the denominator, σ2 is on average underestimated and
division by a “corrected” sample size compensates. In distributional analysis, interests
often are in the expression of variability in the same units as the mean. As a result, interest
commonly involves estimation of σ, and a simple square-rooting of the sample variance
(
√
σ̂2) might not be sufficient.

What does degree of freedommean? Spatz (1996, p. 188) states “the ‘freedom’ in degrees
of freedom [Spatz’s italics] refers to the freedom of a number to have any possible value.”
Spatz (1996) continues with further detailed description and attributes an explanatory
quotation to Walker (1940) who states, “A universal rule holds—The number of degrees
of freedom is always equal to the number of observations minus the number of necessary
relations obtaining among these observations.”
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Using R Using R

Example 4–5 concretely demonstrates, through numerical output, the bias inherent in
the standard deviation. The example involves the idea of statistical simulation, sampling
error, and statistics of statistics. Suffice to say thatwhen the example is executed, the reader
can confirm that the (n− 1) definition of standard deviation, which in fact is used in the
sd() function, provides a closer estimate to sd=10000.

4–5
# two vectors to hold sample estimates of standard deviation
bias.tmp <- unbias.tmp <- vector(mode="numeric")
n <- 30; nsim <- 1000 # sample size and no. of simulations
for(i in seq(1,nsim)) {

# sim. Normal dist. with large standard deviation
fake.dat <- rnorm(n, mean=0, sd=10000)
# compute the sample mean of the count-th simulation
mu <- mean(fake.dat)
# theoretical definition of standard deviation
bias.tmp[i] <- sqrt(sum((fake.dat-mu)^2)/n)
unbias.tmp[i] <- sd(fake.dat) # unbiased sigma^2 estimate

}
# compute summary of each vector of simulated standard devs
summary(bias.tmp)

Min. 1st Qu. Median Mean 3rd Qu. Max.
6263 8855 9670 9700 10520 13760

summary(unbias.tmp)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6370 9007 9835 9865 10690 14000

The example reports by two calls to the summary() function that
√
M2 = 9,700 and√

σ̂2 = 9,865, and the latter being closer to 10,000 is obviously the preferable estimator
of the two. J

The minimum variance unbiased estimator of σ was defined earlier as σ̂′ in eq. (4.20).
How does σ̂′ measure up against σ̂? Example 4–6 , which uses an order of magnitude
more simulations than used in example 4–5 and for the same populationmoments (µ = 0

and σ = 10,000), compares the three estimators. For the example, the sample size has
been reduced by a third to n = 10. The example shows that the σ̂′ = 9,987 indeed
provides less biased estimates of σ than σ̂ and that σ̂′ is consistently closer to 10,000

(see summary(umvubias.tmp)). This particular example uses the pmoms() function.
The pmoms() function simultaneously supports M2, σ̂, and σ̂′ computations of σ. The
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pmoms() function returns an R list that is referred to as an “lmomco product moment
list.”

4–6
# two vectors to hold sample estimates of standard deviation
bias.tmp <- vector(mode="numeric")
unbias.tmp <- umvubias.tmp <- bias.tmp
n <- 10; nsim <- 10000 # sample size and no. of simulations
for(i in seq(1,nsim)) {

fake.dat <- rnorm(n, mean=0, sd=10000)
# a large standard deviation?

pm <- pmoms(fake.dat) # returns lmomco product moment list

bias.tmp[i] <- pm$classic.sd # square root of M2
unbias.tmp[i] <- pm$sd # sigma hat
umvubias.tmp[i] <- pm$umvu.sd # sigma hat prime

}
# compute summary of each vector of simulated standard dev
summary(bias.tmp)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1553 7697 9111 9215 10640 20060

summary(unbias.tmp)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1637 8114 9603 9714 11220 21150

summary(umvubias.tmp)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1683 8342 9873 9987 11530 21740

J

4.3.3 Bias and Boundedness of Coefficient of Variation

The statistic ĈV is biased. The sample estimator ĈV underestimates CV in part because
σ̂ underestimates σ. The ratio σ/µ is on average too small.

Dalen (1987, p. 329) reports that “it is an established but not well-known fact that many
types of sample statistics are algebraically bounded by some function of sample size.”
Concerning this dissertation, the bounds of ĈV and Ĝ (see Section 4.3.4) are of interest.
Kirby (1974) provides applicable discussion of the sample size boundedness of ĈV as
well as Ĝ and other statistics. Further discussion is provided by Wallis and others (1974).
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For a strictly positive distribution, the ĈV (ĈV = σ̂/µ) is bounded (Kirby, 1974) accord-
ing to sample size n. Specifically, ĈV can attain values no larger than

ĈV ≤
√

(n− 1) (4.25)

regardless of how large the CV is of the distribution from which the sample was drawn.
The property of ĈV boundedness can be especially disturbing for distributions possessing
large relative variability—that is,CV values near the upper bounds for the sample size of
a given data set. The product moments, as a result, could be considered as unsatisfactory
estimators of relative variability for highly-dispersed samples.

Using R Using R

For a demonstration, which will be returned to later in Chapter 6 in the context of sam-
ple L-moments as estimators, a Gamma distribution having µ = 3,000 (True.MU=3000)
and CV = 10 (True.CV) is defined in example 4–7 . These statistics result in σ = 30,000

or True.SD=30000. The help() function for a random Gamma variate (the rgamma()
function) reports the relation between the product moments of the distribution and the
shape (a) and scale (s) parameters. The algebra is shown in the last line of example 4–7 .

4–7
True.MU <- 3000; True.CV <- 10 # population statistics
True.SD <- True.MU*True.CV; True.VAR <- True.SD^2
help(rgamma) # use to lookup equations for parameters
s <- True.VAR/True.MU; a <- True.MU/s # the parameters

The demonstration continues in example 4–8 by the creation of a vector nsam of sample
sizes. A portable document format (PDF) graphics device at version="1.4" (or better)
is initiated by pdf() because the feature of transparency provided by the rgb() color
function will be used.3

Continuing, the number of simulations nsim is set at 500. The plot() function imme-
diately follows to initiate the graphics. Next, an outer for() loop is initiated to loop
through the samples sizes in nsam. The inner for() loop runs the simulations on sam-
ples drawn from the Gamma distribution with the rgamma() built-in R function. The ĈV
values are computed by sd(x)/mean(x) and stored in cvtmp. The estimate of ĈV for
the each sample size is computed by mean(cvtmp) and stored in the variable cv. The
3 Transparency is supported in portable document format (PDF) version greater than or equal to
"1.4", and transparency is not supported by all graphics devices supported by R.
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points() function, with each operation, plots a single semi-transparent red filled circle.
The results of the simulation are shown in figure 4.1.

4–8
nsim <- 500
nsam <- c(5, 8, 10, 14, 16, 20, 25, 30, 40, 50,

60, 70, 80, 100, 120, 140, 160, 180, 200)
#pdf("cv.pdf", version="1.4")
plot(c(0), c(0), type="n", xlab="SAMPLE SIZE", ylab="CV",

xlim=range(nsam), ylim=c(1,1.5*True.CV))

counter <- 0
cv <- cvtmp <- vector(mode="numeric")
for(n in nsam) {

counter <- counter + 1
for(i in seq(1,nsim)) {

x <- rgamma(n, shape=a, scale=s) # GAM(a,s)
tmp <- sd(x)/mean(x); cvtmp[i] <- tmp
points(n,tmp, pch=16, col=rgb(0.5,0,0,0.05))

}
cv[counter] <- mean(cvtmp)

}
lines(nsam,cv, lwd=3) # solid thick line
lines(nsam, sqrt(nsam-1), lty=2) # dashed line (bounds)
abline(True.CV,0) # line of true value
#dev.off()

In the figure, the dashed line represents the
√

(n− 1) upper limit. The true CV = 10

is shown by the solid horizontal line. The thick line represents the mean of 100 simulated
sample values for each sample size. (There are 100 symbols within each vertical strip.) For
very small samples sizes, it is seen that the sample estimate of CV generally is severely
limited because of the

√
(n− 1) bounds and as sample size increases to n = 200, the

expected value of ĈV is about 7.8. The ĈV is biased low because of the underestima-
tion sampling property of σ̂. The figure is but one example that could be constructed
for different parent distributions. Figures such as 4.1 show that the product moments
can have considerable limitations for distributions having large relative variation. This
example is considered again in the context of L-moments in Chapter 6 and specifically in
Section 6.5.4. J
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Figure 4.1. Demonstration of upper limit boundedness (dashed line) and bias of ĈV (thick solid
and curved line) as computed by 500 simulations for each sample size for a Gamma distribution
having µ = 3,000 and CV = 10 (solid horizontal line) from example 4–8

4.3.4 Bias and Boundedness of Skew

In small samples, Ĝ is a severely biased and bounded (Kirby, 1974) statistic; the Ĝ under-
estimates the population G. Specifically, the magnitude of Ĝ can attain values no larger
than

|Ĝ| ≤ n− 1√
n− 2

(4.26)

where n is sample size. Dingman (2002, p. 559, eq. CB2-10) reports eq. (4.26) as |gx| =

(n− 2)/
√
n− 1, which is in obvious algebraic conflict. However, it is shown in figure 4.3

through simulation that eq. (4.26) is in fact correct.

The bias and bounds of Ĝ are so severe that Ĝ could be rendered essentially useless
for the analysis of highly skewed data. Highly skewed data are particularly common in
hydrometeorological or other earth-system data sets that could have orders of magnitude
of range and great asymmetry. The Ĝ should be used with some caution; although Ĝ
might remain a reasonable expression of the direction of distribution asymmetry.
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Using R Using R

The effects of the boundedness and negative bias (underestimation) of Ĝ are readily
demonstrated by statistical simulation using the lmomco package. The Pearson Type III
distribution is selected. The Pearson Type III distribution is particularly interesting to
study using productmoments because the parameters of the distribution are the first three
product moments in a similar fashion as the first two product moments are parameters of
theNormal distribution. Therefore, comparisons of skewness estimators using the Pearson
Type III distribution are readily made.

For a demonstration that begins in example 4–9 , a Pearson Type III distribution with
parameters µ = 1000, σ = 500, and G = 5 or PE3(1000, 500, 5) is specified using
the vec2par() (vector to parameters) function. The nonexceeds() function returns a
useful vector of F values and quape3() function returns the quantiles of the distribution
as set by the pe3 parameters. This Pearson Type III distribution is shown in figure 4.2.

4–9
#pdf("pe3experimentA.pdf")
True.Skew <- 5
pe3 <- vec2par(c(1000,500,True.Skew), type="pe3")
F <- nonexceeds(); Q <- quape3(F,pe3)
plot(F,Q, type="l")
#dev.off()

The demonstration continues in example 4–10 . The example sets up of the number
of simulation runs nsim to perform for each of several selected sample sizes nsam. The
vector G stores the mean values of Ĝ for each of the sample sizes. The rlmomco() func-
tion is used to generate random variables of sample size n from the Pearson Type III
parent. Specifically, the rlmomco() function returns simulated values by dispatching
to the QDF of the Pearson Type III distribution. Similar random variable generation
was performed in example 4–9 using the quape3() function. The rlmomco() func-
tion actually dispatches to the quape3() function. The correct dispatch is made because
the content in the type field of the pe3 lmomco parameter list declares the distribution
as Pearson Type III (see example 7–1 on page 163). The pmoms() function computes
the product moments of the simulated sample. For this particular study, interest is in
the Ĝ returned by pmoms(), and therefore, Ĝ for each simulation run is stored in the
vector sG. Finally, the example ends by plotting the results of the experiment in fig-
ure 4.3. The solid line in the figure is the upper bounds of G that is set by the sample
size.
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Figure 4.2. Parent Pearson Type III distribution of PE3(1000, 500, 5) used to assess bias in prod-
uct moment skew from example 4–9

4–10
nsim <- 500
nsam <- c(6, 8, 10, 12, 15, 20, 25, 30)
counter <- 0
G <- sG <- vector(mode = "numeric")

#pdf("pe3experimentB.pdf", version="1.4")
plot(c(), c(), type="b",

xlim=range(nsam), ylim=c(0,1.25*True.Skew),
xlab="SAMPLE SIZE", ylab="PRODUCT MOMENT SKEW")

for(n in nsam) {
for(i in seq(1,nsim)) {

D <- rlmomco(n,pe3)
PM <- pmoms(D)
myG <- PM$ratios[3]
sG[i] <- myG
points(n,myG, pch=16, col=rgb(0.5,0,0,0.05))

}
counter <- counter + 1
G[counter] <- mean(sG)

}
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lines(nsam, G, lwd=3) # solid thick line
lines(nsam,(nsam-1)/sqrt(nsam-2), lty=2) # dashed line (bounded)
abline(True.Skew,0) # line of true value
#dev.off()
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Figure 4.3. Demonstration of upper limit boundedness (dashed line) and bias of Ĝ (thick solid
curved line) as computed by 500 simulations for each sample size for a Pearson Type III distri-
bution of PE3(1000, 500, 5) (G = 5 and is the solid horizontal line) from example 4–10

The results of figure 4.3 demonstrate that the bias of Ĝ for a substantially asymmetrical
distribution is considerable and in fact is alarming for general application of Ĝ for highly-
skewed data. Further, the bias reduces slowly as sample size increases. The results also
show that the boundedness of Ĝ for small sample sizes so greatly affects the estimate that
it is very unlikely that any secure inference of third-order (and higher) distributional shape
could be made with Ĝ for highly skewed distributions. The ramifications of figure 4.3 are
substantial and far reaching. The estimator Ĝ cannot acquire G for reasonable sample
sizes for the specified parent distribution for conditions of large skewness.

These shortcomings of Ĝ are reasonably known among statisticians and many other
practitioners, and hence, the use of transformation ofX often is recommended to reduce

96



Texas Tech University,William H. Asquith, May 2011

skewness by increasing distribution symmetry. Logarithmic transformation is common
in many disciplines and analysis of heavy-tailed distributions and the subject of the next
section, and Section 12.8 also provides extensive additional discussion and computational
example. J

4.4 On the Use of Logarithmic Transformation

It has long been understood that the sample product moments have limitations when
applied to samples having large variation, heavy-tails, or substantial departures from
symmetry. To mitigate for the limitations, data often are transformed into log-space. Such
transformation serves the purpose of reducing variance and skewness. The reduction
in skewness mitigates for the rather poor sampling properties of the product moments
for highly skewed data. Additional discussion of logarithmic transformation is found in
Section 6.5.5.

It is conventional inmany disciplines to compute logarithms and subsequently compute
the sample product moments. A chosen distribution might encompass the log-Normal for
which Jensen and others (1997, p. 87) comment “Log-normal distributions appear to be at
least as common in nature as normal distributions,” and Qian (2010) concludes similarly.
The log-Pearson Type III distribution is another example and is widely used in hydrology
(U.S. Water Resources Council, 1981), and this distribution is extensively considered in
Section 12.8.

It can be said that analysts employing logarithmic transformation can exchange one
problem for another. The influence of low magnitude values (low outliers) now have the
capacity, depending on their values and other factors, to greatly influence the compu-
tation of the sample product moments.4 The application of logarithms in the context of
L-moment capabilities is further discussed beginning on page 150. The basic message to
convey for the present is that use of L-moments removes the requirement that logarithms
be used—distributional analysis in real-space for heavy-tailed and non-normal data is pos-
sible. Throughout this dissertation, it is seen that reliable distributional analysis to such
4 Treatment for low outliers is particularly important in analysis of annual peak streamflow in
semiarid to arid regions like Texas. Asquith and Roussel (2009, p. 19) provide salient discussion.
The lowoutlier problem in Texas flood hydrology, as encountered by the author circa 1995, has had
a profound philosophical impact on the author’s policies towards analysis of hydrometeorological
data in Texas and the greater American Southwest.
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data is possible without a need to apply logarithmic transformation when L-moments or
probability-weighted moments are used to fit probability distributions.

4.5 Summary

In this chapter, the product moments are described, and both the theoretical and sample
product moments are named and mathematically described. Principally, these are the
product moments of mean, standard deviation, variance, coefficient of variation, skew,
and kurtosis. The 22 examples in the chapter demonstrate the computation of these statis-
tics andmany of their properties. Among these properties are the concepts of bias and sam-
pling variance, which also are introduced in the chapter, and how each reflects the prop-
erties of a statistical estimator is discussed. Several examples are provided and built-in
R functions that are demonstrated include mean(), median(), and sd(). The pmoms()
function of the lmomco package is used, and this function returns the first four product
moments and alternative definitions of standard deviation. The bias of the standard devi-
ation is demonstrated as is the boundedness of the coefficient of variation. The bias and
boundedness of the skew also is demonstrated. Finally, a discussion of logarithmic trans-
formation, which often is used to mitigate for the sampling properties of the product
moments, is provided.

98



Texas Tech University,William H. Asquith, May 2011

Chapter 5

Probability-Weighted Moments

In this chapter, I present a nearly exclusive discussion of the probability-weighted

moments. The L-moments are simply linear combinations of these, but understanding of

probability-weightedmoments provides an additional prerequisite needed for accessibil-

ity into this dissertation. The probability-weighted moments are convenient in support

of L-moments for censored data, but I have purposefully placed censored probability-

weighted moments in a later chapter. This chapter presents the defining mathematics

and sample counterparts of probability-weighted moments along with application of

the two for fitting of a distribution. Although some practitioners might need few of the

results herein, this chapter never-the-less is important to distributional analysis with

L-moment statistics using R.

5.1 Introduction

The probability-weighted moments (Greenwood and others, 1979) are an alternative
statistical “moment” that like the product moments, characterize the geometry of dis-
tributions and are useful for parameter estimation. The probability-weighted moments
emerged in the late 1970s generally for the purposes of parameter estimation for distribu-
tions having only aQDF form. In particular, the five-parameterWakeby distribution of Sec-
tion 9.2.4 was the subject of many of the early studies. At the time, theWakeby distribution
(Landwehr and others, 1979a) seems to have been of particular discipline-specific interest
for flood hydrology. However, the theory of probability-weighted moments (Hosking,
1986) and their appearance as a new tool in the statistician’s tool box garnered additional
interest (Landwehr and others, 1979b, 1980; Hosking and others, 1985; Ding and Yang,
1988).

99



Texas Tech University,William H. Asquith, May 2011

The probability-weighted moments are well suited, and generally superior, to the prod-
uct moments for parameter estimation for distributions of data having large skew, heavy
or long tails, or outliers. Although powerful for parameter estimation, the probability-
weightedmoments unfortunately are difficult to individually interpret as measures of dis-
tribution geometry. For example, Ulrych and others (2000, p. 53) remark that probability-
weighted moments “obscure the intuitive understanding of L-moments.”1 By the mid
1980s, the probability-weighted moments were reformulated into the L-moments, which
were unified by Hosking (1990) and are formally described in Chapter 6.

The L-moments are readily interpreted in similar fashions as the product moments in
Chapter 4. The probability-weighted moments and L-moments are linear combinations
of each other. Computation of one therefore yields the other; so inferences based on either
are identical. The choice of between probability-weighted moments and L-moments can
be influenced by simple mathematical convenience.

Variations on probability-weighted moments exist. For example, they are amenable
to situations of data censoring, and the definitions and applications of probability-
weighted moments for some types of censored data are deferred to Sections 12.2 and
Section 12.4 in the context of advanced topics of distributional analysis. Another vari-
ant of probability-weighted moments has been developed (Haktanir, 1997) called self-
determined probability-weighted moments, which increases statistical performance by
“utilizing mathematical properties of the underlying probability distribution” (Whalen
and others, 2002, p. 177). This variant is not considered in this dissertation.

The lmomco package provides probability-weightedmoment support, and the functions
are listed in table 5.1. These functions support both theoretical and sample computations.
The distinctions between the two computation types are discussed in the next section. The
listed functions are thoroughly demonstrated following the Using R identifiers in this
chapter and elsewhere in this dissertation.

5.2 Probability-Weighted Moments—Definitions and Math

The probability-weighted moments are formally defined in this section and separately
introduced as theoretical and sample counterparts.
1 See Section 3.1 and particularly page 62 of this dissertation related to L-moment interpretation
in terms of order statistics.
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Table 5.1. Summary of probability-weighted moment related functions of the lmomco package by
Asquith (2011)
Function Purpose

theopwms() Compute theoretical probability-weightedmoments by distribution
pwm() Compute unbiased sample probability-weighted moments
pwm.ub() Compute unbiased sample probability-weighted moments by dis-

patch to pwm()
pwm.gev() Compute sample probability-weightedmoments that are optimized

for the Generalized Extreme Value distribution
pwm.pp() Compute sample probability-weighted moments by plotting posi-

tions
vec2pwm() Convert a vector to probability-weighted moments
pwm2vec() Convert probability-weighted moments to a vector

5.2.1 Theoretical Probability-Weighted Moments

The theoretical probability-weighted moments of random variable X with a CDF of
F (x) and QDF of x(F ) are defined by the expectations

Mp,r,s = E[x(F )p F (x)r (1− F (x))s] (5.1)

where p, r, and s are integers. By historical convention, the most common probability-
weighted moments βr are

βr = M1,r,0 = E[x(F )F r] (5.2)

and so for a QDF x(F ), the βr for r ≥ 0 are

βr =

∫ 1

0

x(F ) F r dF (5.3)

At this point, it is informative to juxtapose the definition of βr to the product moments
(noncentral, no offset of the mean µ for r ≥ 2) and consider the mathematical similarities
and differences. Noncentral product moments are the expectations

E[Xr] =

∫ 1

0

[x(F )]r dF (5.4)
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Readers are asked to juxtapose the quantities being raised to the power r in eqs. (5.3)
and eq. (5.4). In the case of product moments, the quantities x are raised to r. Whereas,
for the probability-weighted moments, the nonexceedance probability values 0 ≤ F ≤ 1

are raised to r. In other words, each x is weighted by a power of F , hence, the descriptive
name of probability-weighted moment.

This subtle mathematical adjustment makes substantial changes and specific improve-
ments to the sampling properties of the probability-weighted moments relative to the
product moments. As values for the differences x − µ become large in the computation
of sample product moments, these large differences have an increasingly larger influence
on the estimation of the moment. In other words, relatively more weight is contributed
by large differences to the computation of the moment in the product moment case. This
increased proportionality of more weight does not occur with the weighting by powers
of F for the probability-weighted moments in part simply because of the constraint that
F is on the interval 0 ≤ F ≤ 1. Additionally, the problem of disproportionally larger
influence for large differences from the mean (consider the case of outliers) is made much
worse by taking powers of 2, 3, 4, and larger. In the numerical summations approximating
the integral, large differences are increasingly magnified as r increases beyond r ≥ 2.

Using R Using R

The theopwms() function, which implements eq. (5.3) by using the integrate()
function, the theoretical probability-weighted moments for the standard Normal distri-
bution are computed in example 5–1 . In the example, the lmomco parameter list (see
page 163 and ex. 7–1 ) for the distribution is set by the vec2par() function and the theo-
retical probability-weighted moments are set into NORpwm. The first two βr are set into B0
and B1 by definition unique to this distribution (see Section 7.2.1). The deltaMEAN and
deltaSIGMA are the respective differences, and the output by the cat() function shows
numerical equivalency (“# OUTPUT: 0 0”). The first βr is the mean or β0 = µ.

5–1
mu <- 0 # set respective mean
sig <- 1 # and standard deviation
NORpar <- vec2par(c(0,1), type="nor")

# standard Normal using lmomco nomenclature
NORpwm <- theopwms(NORpar) # PWMs of standard Normal

B0 <- mu # by definition
B1 <- 0.5 * ( (sig/sqrt(pi)) + mu ) # by definition
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deltaMEAN <- B0 - NORpwm$betas[1] # difference between the
deltaSIGMA <- B1 - NORpwm$betas[2] # two PWM computations
cat(c("# OUTPUT:", round(deltaMEAN), round(deltaSIGMA)))
# OUTPUT: 0 0

J

5.2.2 Sample Probability-Weighted Moments

The sample probability-weighted moments are computed for a sample from the sample
order statistics x1:n ≤ x2:n ≤ · · · ≤ xn:n. Unbiased estimators of βr (Hosking and Wallis,
1997, p. 26) are computed by

β̂r =
1

n

(
n− 1

r

)−1 n∑
j=1

(
j − 1

r

)
xj:n (5.5)

and the so-called plotting-position estimators of βr are computed by

β̃r =
1

n

n∑
j=1

(
j + A

n+B

)r
xj:n (5.6)

whereA andB are plotting-position coefficientsA > B > −1. Hosking (1986, pp. 32–33)
reports that “there is no general reason to estimate [probability-weightedmoments] by any
particular unbiased or plotting-position estimator.” The presentation of either estimator
occurs throughout probability-weightedmoment (and L-moment) literature; in particular,
β̂r is particularly common: (Landwehr and others, 1979b; Hosking, 1990, 1995; Zafirakou-
Koulouris and others, 1998). The j = 1 term in eq. (5.5) is sometimes written as j = r+ 1

with no numerical change in results because of zero multipliers on the first r terms.2 The
following example demonstrates

5–2
n <- 10; r <- 3
sapply(1:n, function(j) choose(j-1,3))
[1] 0 0 0 1 4 10 20 35 56 84

2 This variation in β̂r definition can lead to considerable frustration to early students on the subject.
The author prefers the j = 1 notation as it is parallel with the idea of iterating through the entire
sample at the minor cost of a few extra steps.
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sapply(r+1:n, function(j) choose(j-1,3))
[1] 1 4 10 20 35 56 84 120 165 220

The β̂r are used in general practice, but in special circumstances in which a parent dis-
tribution is known, optimal values ofA andBmight exist. For the vast majority of applica-
tions, β̂r are sufficient. Hosking and Wallis (1997, pp. 33–34) provide succinct discussion
and pertinent literature citations. Chen and Balakrishnan (1995) make comparisons of the
two probability-weighted moment estimators for the Generalized Extreme Value, Gener-
alized Logistic, and Generalized Pareto distributions in the context of the “infeasibility”
problem.

Chen and Balakrishnan defined the infeasibility problem as a situation in which the
upper limit of a distribution is less than one or more of the largest sample values or in
which the lower limit is greater than one or more of the smallest sample values. The
authors consider, using simulation and a range of sample sizes and shape parameters, the
percent of time that β̂r and β̃r produce infeasible distribution parameters. The authors con-
clude that β̃r can measurably reduce the probability of infeasible parameters for certain
conditions of sample size and shape. Chen and Balakrishnan (1995, p. 569) recommend
that a “routine check be carried out to see whether the problem of infeasible parame-
ter estimates occurs, and use modified probability-weighted moment estimators if the
problem does occur.”

Modified probability-weighted moment estimators are described on various pages by
Hosking (1986) to mitigate for infeasible parameter estimates, and the algorithm is sum-
marized by Chen and Balakrishnan (1995, p. 568) in a near verbatim quote:3

Let x denote x1:n or xn:n, if the boundary condition [limit] is found to be vio-
lated by the [probability-weighted moment] estimators [applicability for either
unbiased and plotting-position seems apparent to this author (Asquith)] of the
parameters, equate x to ξ + α/κ and solve for κ. This leads to
κ = − log[(2β1 − x)/(β0 − x)]/ log(2) for the Generalized Extreme Value,
κ = (2β1 − β0)/(x− β0) for the Generalized Logistic,
κ = β0/(x− β0) for the Generalized Pareto, and

the other parameters are estimated as before.

3 This algorithm is much more meaningful after reviewing the Generalized Extreme Value, Gen-
eralized Logistic, and Generalized Pareto distributions in Chapter 8.
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Further commentary, based on the author’s experiences (Asquith and Roussel, 2009)
with large numbers of sample probability-weighted moment computations with real-
world data using small sample sizes, is needed. In rare circumstances, values for sample
probability-weighted moments computed by β̂r, when converted to L-moments, violate
(barely) the theoretical bounds or constraints discussed in Chapter 6. Because probability-
weighted moments and L-moments are linear combinations of each other, having one is
the same as having the other. Therefore, when the L-moment constraints are violated, the
author suggests that plotting-position estimators can be used as a fall-back method of
computation.4

Special classes of data could have prior estimates of F ; in other words, probability is
known a priori. An example are distributions of grainsize, in which the fraction of the
sample passing specific diameters (sieve size) is recorded. The random variable in this
situation is seemingly the fraction passing and not the diameter—the diameter being
fixed by the measurement apparatus. Asquith (2003, chap. 4) suggests that a probability-
weighted moment type referred to as prior probability-weighted moments can be used
for a numerical approximation to eq. (5.3). Prior probability-weighted moments are not
considered in this dissertation.

Using R Using R

The sample probability-weighted moments are shown mathematically in eq. (5.5) with
notation (a b). The (a b) notation is defined as(

a

b

)
=

a!

(a− b)! b!
for b ≤ a (5.7)

and by convention 0! = 1; eq. (5.7) is an expression for the number of possible combina-
tions of a items taken b at a time.

The computation of combinations is trivial in R with the choose() function. The func-
tion is demonstrated in example 5–3 for the problem of solving for the number of com-
binations of a committee of 3 from a group of 20 people. This example is adapted from
Ross (1994, example 4a). The result is that there are 1,140 possible combinations.

4 The specific algorithm is discussed in Chapter 6 in the context of example 6–4 .
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5–3
choose(20,3) # built-in to R
[1] 1140

Combinatorial theory and notation important for order statistics and other statistics
based on order. Readers should note that the use of the choose() function is important
because of the ratio in eq. (5.7) by direct computation by use of three factorial() func-
tions is not always feasible for large a and b because of inherent numerical limitations of the
computer. Finally, the terms returned by (a b) are known as binomial coefficients. J

The probability mass function of the Binomial distribution, not a PDF because the
distribution is discrete (not continuous), is available as the pbinom() function and is
defined as

P (i) =

(
n

i

)
pi(1− p)n−1 for i = 0, 1, · · · , n (5.8)

where P (i) is the probability of i successes in n attempts, and p is the probability of
success, and 1− p is the probability of failure.

To demonstrate, suppose that a coin is flipped 5 times and let “heads” be a success
(p = 0.5). What is the probability that exactly 3 heads will be observed for 5 flips? The
solution (Ross, 1994, example 7a) is shown in example 5–4 and is 0.3125 or 10/32.

5–4
dbinom(3,5,0.5) # probability density of Binomial from R
[1] 0.3125

J

Returning to the sample probability-weighted moments, the unbiased β̂r are readily
computed in example 5–5 with the pwm.ub() function. In the example, the Normal
distribution is sampled for n = 100, which has µ = 100 and σ = 50, and the sample
is placed into fake.dat. The unbiased β̂r values of the sample finally are computed by
pwm.ub() on the fake.dat vector.

5–5
fake.dat <- rnorm(100, mean=100, sd=50) # random sample
betas <- pwm.ub(fake.dat); print(betas) # compute betas and print
$betas
[1] 106.36847 67.13285 49.15510 38.93202 32.33183
$source
[1] "pwm.ub"

J
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For further demonstration of sample probability-weighted moments, a custom func-
tion is created for computation of an arbitrary number of β̃r using the plotting-position
formula. The test.pwm.pp() function is defined in example 5–6 .

5–6
"test.pwm.pp" <- function(x, nmom=5, A=-0.35, B=0) {

n <- length(x); x <- sort(x)
betas <- rep(0,nmom)
for(r in 0:(nmom-1)) {

beta <- 0
for(j in 1:n) {

beta <- beta + ((j+A)/(n+B))^r * x[j]
}
betas[r+1] <- beta

}
return(list(betas=betas/n, source="test.pwm.pp"))

}

The test.pwm.pp() function subsequently is used in example 5–7 . The example
simulates a Normal distribution for a sample size of n = 10,000. The first five β̃r are
computed by the test.pwm.pp() function. The default plotting-positions coefficients
of A = −0.35 and B = 0 are favorable for the Generalized Extreme Value distribution.
An equivalent is provided in the lmomco package as the pwm.gev() function. Consistent
with the name, the pwm.gev() function uses the optimal coefficients for the Generalized
ExtremeValue distribution, and the output of pwm.gev() is shown aswell in the example.
The two lists of β̃r are identical and are shown following the $betas attribute in the
example.

5–7
fake.dat <- rnorm(10000, mean=100, sd=50)
test.pwm.pp(fake.dat)
$betas
[1] 99.60012 63.92522 47.33939 37.80697 31.59183
$source
[1] "test.pwm.pp"

pwm.gev(fake.dat)
$betas
[1] 99.60012 63.92522 47.33939 37.80697 31.59183
$source
[1] "pwm.gev"
$A
[1] -0.35
$B
[1] 0
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The $source attribute in the output shown in the example from the test.pwm.pp()
and pwm.gev() functions identifies the calling function. The $A and $B variables of the
list returned by the pwm.gev() function store the A and B argument values for later
reference if needed. J

Finally, it is informative to finish this Using R with a formal presentation of the
probability-weightedmoment data structures of lmomcowith commentary. This data struc-
ture is known as the “lmomco probability-weighted moment list.” To demonstrate, an
lmomco probability-weighted moment list for β0 = 450, β1 = −214, β2 = −139, and
β3 = −102 in example 5–8 is created and displayed from the PWM variable using the
str() function.

5–8
PWM <- vec2pwm(c(450, -214, -139, -102), as.list=TRUE)
str(PWM)
List of 5
$ BETA0: num 450
$ BETA1: num -214
$ BETA2: num -139
$ BETA3: num -102
$ BETA4: num NA
$ source: chr "vec2pwm"

The example shows that only the first five (only four are computable for the example, so
NA [not applicable] is returned for β5) are supported by the function for as.list=TRUE
and are available as the PWM$BETAr values for 0 ≤ r ≤ 4. An alternative probability-
weighted moment list structure also is used in lmomco and is shown in example 5–9 . In
the example, the previous variable PWM of example 5–8 is converted to L-moments and
back to probability-weighted moments. The L-moments are not shown in the example
in order to maintain the focus on probability-weighted moments. The βr are stored in a
vector named $betas. The name of the generating function of the values in the vector
is stored in the $source string. The $source variable is used in many list structures by
lmomco to cast heredity of the numerical results.

5–9
lmom2pwm(pwm2lmom(PWM))
$betas
[1] 450 -214 -139 -102 NA

$source
[1] "lmom2pwm"
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That there are two data structures in lmomco, which represent probability-weighted
moments, is a historical artifact. (Technically, there are variations of the theme such
as shown in example 5–7 .) The fact that there are two primary structures containing
probability-weighted moments is partly a reflection of changing design ideas and deci-
sions by the author. The form seen in example 5–9 is preferable because of the vector form
of the βr, which can grow to arbitrary length, can readily be queried to extract specific βr
in a programming context. J

5.3 The Method of Probability-Weighted Moments

The method of probability-weighted moments is a method of parameter estimation
in which the parameters of a distribution are chosen so as to equate the theoretical
probability-weighted moments of the distribution to the sample probability-weighted
moments. For example, the parameters Θ are chosen such that βr = β̂r (or βr = β̃r for
the quantity r−1 equal to the number of parameters. The method is demonstrated in this
section.

Using R Using R

The Gamma distribution is described in Section 7.2.3, and from that section, the rela-
tions between β0 and β1 and the parameters α and β are

β0 = αβ (5.9)

2β1 =
β√
π

exp(log[Γ(α + 0.5)]− log[Γ(α)])− β0 (5.10)

whereΓ(α) is the complete gamma function.5 The relations between the productmoments
and the parameters are more straightforward and are

α = µ/β (5.11)

β = σ2/µ (5.12)

In example 5–10 , the method of probability-weighted moments and general parameter
estimation abilities of the sample probability-weighted moments are demonstrated for
5 The complete gamma function is shown in eq. (8.85).

109



Texas Tech University,William H. Asquith, May 2011

a GAM(2, 3) (shape=2 and scale=3 in the R parlance) distribution using an n = 20

sample for 10,000 simulations. For the example, the lmomco style of distribution specifica-
tion is used through the vec2par() function. The rlmomco() function returns random
values from the Gamma distribution because this distribution is identified by the type
attribution in the list PAR.gam. The probability-weighted moments of the sample X are
computed using the pwm() function. These values are converted to L-moments using the
pwm2lmom() function. The conversion is needed because the pargam() function is setup
to operate on L-moments and not probability-weighted moments. Finally, the results of
the simulation are output at the end of the example and are α̂ = 2.15 and β̂ = 3.13 from
probability-weighted moments and α̂ = 2.33 and β̂ = 2.94 from product moments.

5–10
n <- 20; nsim <- 10000 # sample size and number of simulations
# set the gamma distribution according to lmomco style
Alp <- 2; Beta <- 3
PAR.gam <- vec2par(c(Alp,Beta), type="gam")
# Alp is SHAPE and Beta is SCALE.
# create some vectors
Alp.PWM <- vector(mode="numeric")
Alp.PM <- Beta.PM <- Beta.PWM <- Alp.PWM

# the simulation loop
for(i in 1:nsim) {

X <- rlmomco(n,PAR.gam) # random samples
sampar <- pargam(pwm2lmom(pwm(X)))
Alp.PWM[i] <- sampar$para[1]
Beta.PWM[i] <- sampar$para[2]
sampms <- pmoms(X)
samMU <- sampms$moments[1]
samSD <- sampms$moments[2]
tmpB <- samSD^2/samMU
Alp.PM[i] <- samMU/tmpB
Beta.PM[i] <- tmpB

}
results <- c(mean(Alp.PWM), mean(Beta.PWM),

mean(Alp.PM), mean(Beta.PM))
results <- sapply(results, round, digits=3)

cat(c("PWM Results: alpha=",results[1]," beta=",results[2],"\n"))
PWM Results: alpha= 2.154 beta= 3.134

cat(c("PM Results: alpha=",results[3]," beta=",results[4],"\n"))
PM Results: alpha= 2.327 beta= 2.942
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The results reported at the end of the example show that the probability-weighted
moments provide a closer estimate to the true shape of the distribution α = 2 and that
the product moments provide a closer estimate to the true scale of the distribution β = 3.
Different results would occur for different values of α, β, and sample size. In general, the
probability-weighted moments will remain a competitive tool for parameter estimation,
and as the magnitude of the scale and/or shape increases they will often be superior to
product moments. J

5.4 Summary

In this chapter, the probability-weighted moments are described. A brief historical con-
text of the moments and their heredity to L-moments is provided. The mathematics of
both the theoretical and sample probability-weighted moments then followed. The sam-
ple probability-weighted moments can be computed either by unbiased estimators or by
plotting-position estimators, and both techniques are described. A total of 10 examples
are provided, and probability-weighted moment related functions of the lmomco package
that were demonstrated include pwm.gev(), pwm.ub(), theopwms(), pwm2lmom(),
and lmom2pwm(). The lmomco probability-weighted moment list is discussed to enhance
the understanding of the probability-weighted moment implementation of the lmomco
package. Finally, a short discussion of some sampling properties of probability-weighted
moments in the context of the method of probability-weighted moments for the Gamma
distribution is made. Because probability-weighted moments and L-moments are lin-
ear combinations of each other, a complementary discussion of sampling properties of
probability-weighted moments is indirectly provided in Chapter 6 and specifically in Sec-
tion 6.5.
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Chapter 6

L-moments

In this chapter, I present a comprehensive introduction to L-moments an ancillary dis-

cussion. Understanding of the L-moments, but not the entire chapter, provides a critical

prerequisite needed for this dissertation. I have purposefully placed both censored and

multivariate L-moments in a later chapter. This chapter presents the defining mathe-

matics and sample counterparts of L-moments along with a step-by-step presentation

of distribution fit by L-moments. Secondarily important components of this chapter are

the visualization of L-moment weight factors, a reference frame perspective between

L-moments and product moments, and TL-moments (defining mathematics and sam-

ple counterparts). The discussion of the sampling properties of L-moments is to be

juxtaposed with similar discussion of the product moments in an earlier chapter. The

sampling properties provide an important justification for distributional analysis with

L-moment statistics using R.

6.1 Introduction

As with the probability-weighted moments, L-moments (Hosking, 1990) are an “attrac-
tive alternative system of moment-like quantities” (Jones, 2004, p. 98) and thus are an
alternative to product moments. Like other statistical moments, L-moments characterize
the geometry of distributions and summarize samples. L-moments are directly analogous
to—that is, have similar interpretations as—the productmoments. Thismakes L-moments
conceptually accessible to many potential users.

L-moments are based on linear combinations of differences of the expectations of order
statistics (see Section 3.1) as opposed to the product moments, which are based on powers
(exponents) of differences (see eq. (4.10)). For example, the product moment definition
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of skew (based on differences to a third power, see eq. (4.14)), results in extremely poor
sampling performance for distributions characterized by heavy tails, asymmetry, and
outliers. The performance of kurtosis, which is based on differences to the fourth power
(see eq. (4.15)), is evenworse. In part because of favorable sampling performance, Hosking
(1992) concludes that “L-moments can provide good summary measures of distributional
shape and may be preferable to [product] moments for this purpose.”

Data that frequently contain outliers and heavy tails are endemic in the earth-system
sciences. The distribution of flood magnitude is one such example and earthquake dam-
ages are another. The history of L-moments could be considered as beginning with the
statistical needs of researchers of surface-water hydrology (Landwehr and others, 1979a,b,
1980) with interests in floods, extreme rainfall hydrology, and ancillary topics in the mid
1970s through the later parts of the 20th century. However, Hosking (1990) traces statis-
tical connections to L-moments back to the 19th century. Historically, L-moments were
developed from probability-weighted moments (see Chapter 5) but were “adumbrated1

earlier” (Hosking, 1999, p. 1) such as by Kaigh and Driscoll (1987) or Sillitto (1951, 1969).
The core theory of L-moments for univariate applications was unified by about the late
1980s to early 1990s. Hosking (1990) provides a canonical reference along with the general
historical context and placement of L-moments in the broader statistical literature.

Since that time, the L-moment and probability-weightedmoment literature continues to
develop and expand (Delicado and Goria, 2008; Elamir and Seheult, 2003, 2004; Haktanir,
1997; Hosking, 1995, 2000, 2006, 2007a,b,c; Jones, 2004; Karvanen, 2006; Kliche and others,
2008; Kroll and Stedinger, 1996; Liou and others, 2008; Royston, 1992; Serfling and Xiao,
2007; Ulrych and others, 2000; Unnikrishnan and Vineshkumar, 2010; Wang and others,
2010; Whalen and others, 2002). Interest in L-moments is not limited to the statistical
profession and those interested in distributions of earth-system phenomena, but interest
exists within financial (Hosking, 1999; Hosking and others, 2000; Jurczenko and others,
2008) and reliability disciplines (Unnikrishnan and Vineshkumar, 2010) as well.

A summary and a then contemporary statement (early 1990s) concerning the excitement
that L-moments caused is informative. Vogel (1995) states that

The challenges posed by extreme hydrological events continue to vex hydrol-
ogists. The introduction of the theory of L-moments (Hosking, 1990) is prob-
ably the single most significant recent advance relating to our understanding
of extreme events. Generally, L-moments are linear combinations of ordered

1 Adumbrate—indicate faintly, foreshadow.
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observations, which are unbiased regardless of the parent population, hence
L-moments allow us to discriminate the behavior of skewed hydrologic data
which was difficult or impossible only a few years ago.

Expanding on these statements, Ulrych and others (2000) conclude from their numerical
experiments that “L-moments are superior estimates to those obtained using C-moments
[product moments] and the principle of maximum entropy.” Finally, Ulrych and others
(2000, p. 52) comment forcefully on Hosking (1990) by stating that this Hosking paper is
“a beautiful paper indeed [and] has had an explosive effect in some fields.”

In another broadly sweeping paper on the general topic of extreme-value analysis
in hydrology, Katz and others (2002, pp. 1287–1288) acknowledge the contributions of
probability-weighted moments and L-moments. The authors state

Probability-weighted moments (or L-moments) are more popular than [maxi-
mum likelihood] in applications to hydrologic extremes, both because of their
computational simplicity and because of their good performance for small sam-
ples. . . . [L-moments can serve] as a good choice of starting values for the itera-
tive numerical procedure required to obtain [maximum likelihood] estimates
(Hosking, 1985).

L-moments are useful because they are easily used to fit common (Normal, Gamma)
and not so common probability distributions (such as the Generalized Logistic orWakeby)
to data sets. L-moments have powerful features for discriminating between distribution
types. L-moments are approximately unbiased (unlike the higher product moments),
robust, and consistent. Further, L-moments provide more secure inference of distribution
shape than the product moments. Because of inherently attractive sampling characteris-
tics, L-moments are regarded as highly reliable summary statistics, and through the use
of R, the L-moments are straightforward to incorporate into practical problems. Therefore,
the primal objective of this dissertation is to advocate for the use, or at least consideration,
of L-moments because

L-moments can be “drop-in” replacements to the product moments.

The lmomco package provides substantial L-moment support. The primary L-moment
functions from the package are listed in table 6.1, and distribution-specific L-moment
functions are listed in table 6.2. These functions support both theoretical and sample com-
putations. The distinctions between the two computation types are discussed in the next
section. The listed functions are thoroughly demonstrated following the Using R identi-
fiers in this chapter and elsewhere in this dissertation. A similar summary of functions
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from the Lmoments package is listed in table 6.3, and those functions of the lmom package
are listed in table 6.4.Many of the functions listed in the four tables are used in examples in
this chapter. The functions in these tables and others are answers to the call for L-moment
support by developers of statistical packages made by Royston (1992) that is summarized
on page 10 of this dissertation.

Table 6.1. Summary of L-moment computation and support functions of the lmomco package
by Asquith (2011)

Function Purpose
are.lmom.valid() Check theoretical bounds of L-moments
lmorph() Morphs between two styles of L-moment lists
theoLmoms() Compute theoretical L-moments of a distribution
theoTLmoms() Compute theoretical TL-moments of a distribution
theoLmoms.max.ostat() Compute theoretical L-moments by maximum order

statistics
lmoms() Compute an unbiased sample L-moments by dis-

patch to TLmoms()
lmoms.ub() Compute unbiased sample L-moments by lmoms()
lmomRCmark() Compute a right-censored sample L-moment by indi-

cator variable
lmomsRCmark() Compute right-censored sample L-moments by indi-

cator variable
TLmom() Compute an unbiased sample TL-moment
TLmoms() Compute unbiased sample TL-moments by dispatch

to TLmom()
pwm2lmom() Convert probability-weighted moments to

L-moments
lmom2pwm() Convert L-moments to probability-weighted

moments
vec2lmom() Convert a vector to L-moments
vec2TLmom() Convert a vector to TL-moments
lmom2vec() Convert L-moments to a vector
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Table 6.2. Summary of L-moment computation functions for probability distributions of the lmomco
package by Asquith (2011)

Distribution L-moments
Cauchy lmomcau()

Exponential lmomexp()

Gamma lmomgam()

Generalized Extreme Value lmomgev()

Generalized Lambda lmomgld()

Generalized Logistic lmomglo()

Generalized Normal lmomgno()

Generalized Pareto lmomgpa()

Gumbel lmomgum()

Kappa lmomkap()

Kumaraswamy lmomkur()

log-Normal3 lmomln3()

Normal lmomnor()

Pearson Type III lmompe3()

Rayleigh lmomray()

Reverse Gumbel lmomrevgum()

Rice lmomrice()

Wakeby lmomwak()

Weibull lmomwei()

Right-Censored Generalized Pareto lmomgpaRC()

Trimmed Generalized Lambda lmomTLgld()

Trimmed Generalized Pareto lmomTLgpa()

Table 6.3. Summary of L-moment computation functions of the Lmoments package by Karvanen
(2009)

Function Purpose
Lmoments() Compute unbiased sample L-moments
t1moments() Compute unbiased sample TL-moments with trim t = 1
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6.2 L-moments—Definitions and Math

The L-moments are formally defined in this section and separately introduced as theoret-
ical and sample versions.

6.2.1 Theoretical L-moments

The theoretical L-moments for a real-valued random variableX with a QDF of x(F ) are
defined from the expectations of order statistics. The order statistics of X for a sample
of size n are formed by the ascending order X1:n ≤ X2:n ≤ · · · ≤ Xn:n. The theoretical
L-moments for r ≥ 1 are defined by

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E[Xr−k:r] (6.1)

where r is the integer order of the L-moment, and E[Xr−k:r] is the expectation of the r−k
order statistic of a sample of size r, and this equation commonly is expressed in terms
of the QDF as described presently. L-moments also are commonly formulated (Hosking,
1990) from rth-shifted Legendre polynomials P ∗r (F ), which are defined as

P ∗r (F ) =
r∑

k=0

(−1)r−k
(
r

k

)(
r + k

k

)
F k (6.2)

from which the L-moments are

λr =

∫ 1

0

x(F )P ∗r−1(F ) dF (6.3)

The first four theoretical L-moments in terms of the order statistic expectations follow
from eq. (6.1) and are

λ1 = E[X1:1] (6.4)

λ2 = 1
2
(E[X2:2]− E[X1:2]) (6.5)

λ3 = 1
3
(E[X3:3]− 2E[X2:3] + E[X1:3]) (6.6)

λ4 = 1
4
(E[X4:4]− 3E[X3:4] + 3E[X2:4]− E[X1:4]) (6.7)
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and arguments justifying their interpretations as respective measures of location, scale or
variability or dispersion, skew, and kurtosis are provided in Section 3.1. It is noteworthy
to compare the similarities of eq. (6.5) and eq. (3.31) (Gini mean difference, G) to see the
source of relation between λ2 and G considered in Chapter 3. The system of equations in
eq. (6.7) are virtually identical to those shown by Kaigh and Driscoll (1987, eq. 2.4, p. 26).

An expression, based on proof by Hosking (1986, 1996a) and alternative proof by Jones
(2004), for λr for r ≥ 2 in terms of the CDF is

λr =
1

r

r−2∑
j=0

(−1)j
(
r − 2

j

)(
r

j + 1

)∫ ∞
−∞

[F (x)]r−j−1 × [1− F (x)]j+1 dx (6.8)

or
λr =

∫ ∞
−∞

F (x)× [1− F (x)]× Lr(F (x)) dx (6.9)

where

Lr(u) =
1

1− r

r−2∑
j=0

(−1)j
(
r − 1

j

)(
r − 1

j + 1

)
ur−2−j(1− u)j (6.10)

The first four theoretical L-moments in terms of the QDF using eqs. (3.4) and (6.1) are

λ1 =

∫ 1

0

x(F ) dF (6.11)

λ2 =

∫ 1

0

x(F )× (2F − 1) dF (6.12)

λ3 =

∫ 1

0

x(F )× (6F 2 − 6F + 1) dF (6.13)

λ4 =

∫ 1

0

x(F )× (20F 3 − 30F 2 + 12F − 1) dF (6.14)

The theoretical L-moments can be written in terms of the derivatives of the QDF (nota-
tionally x(r)(F ); x(0)(F ) is the usual QDF, x(1)(F ) is the first derivative, . . . ). This “partic-
ularly striking result” (Hosking, 2007b, p. 3027) is

λr+1 =
1

r!

∫ 1

0

F r(1− F )r × x(r)(F ) dF (6.15)

This equation (derived from eq. (6.66) for k = r) is particularly useful in interpretation
of λ2 (L-scale), which is a measure of distribution variability or spread. The spread of
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Table 6.4. Summary of L-moment computation functions for samples and by probability distribution
of the lmom package by Hosking (2009a)
Function Purpose
samlmu() Compute unbiased sample L-moments
lmrexp() Compute L-moments of Exponential distribution
lmrgam() Compute L-moments of Gamma distribution
lmrgev() Compute L-moments of Generalized Extreme-Value distribution
lmrglo() Compute L-moments of Generalized Logistic distribution
lmrgpa() Compute L-moments of Generalized Pareto distribution
lmrgno() Compute L-moments of Generalized Normal (lognormal) distribution
lmrgum() Compute L-moments of Gumbel (Extreme-Value Type I) distribution
lmrkap() Compute L-moments of Kappa distribution
lmrln3() Compute L-moments of Log-Normal (3 parameter) distribution
lmrnor() Compute L-moments of Normal distribution
lmrpe3() Compute L-moments of Pearson Type III distribution
lmrwak() Compute L-moments of Wakeby distribution
lmrwei() Compute L-moments of the Weibull distribution

the distribution is proportional to the rate of change (the first derivative) of the QDF. The
greater the rate of change, the larger distance between successively ordered samples.

All theoretical L-moments can be expressed by the first derivative of a QDF. Hosking
(2007a, p. 2877) shows these to be

λ1 − L =

∫ 1

0

(1− F )× x(1)(F ) dF when the lower bound L is finite (6.16)

λ2 =

∫ 1

0

F (1− F )× x(1)(F ) dF (6.17)

λ3 =

∫ 1

0

F (1− F )(2F − 1)× x(1)(F ) dF (6.18)

λ4 =

∫ 1

0

F (1− F )(5F 2 − 5F + 1)× x(1)(F ) dF (6.19)

and in general

λr =

∫ 1

0

Zr(F )× x(1)(F ) dF for r ≥ 2 (6.20)

where the polynomial Zr(F ) of degree r in terms of eq. (6.2) is
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Zr(F ) =

∫ 1

F

P ∗r−1(v) dv (6.21)

Useful distributions have non-zero variability, and therefore, a restriction on λ2 is that

λ2 > 0 (6.22)

and continuing with the bounds of the L-moments, the theoretical L-moment ratios are
the dimensionless quantities

τ2 = λ2/λ1 = coefficient of L-variation (6.23)

τ3 = λ3/λ2 = L-skew (6.24)

τ4 = λ4/λ2 = L-kurtosis (6.25)

and for r ≥ 5, which are unnamed, are

τr = λr/λ2 (6.26)

The quantity τ2 is meaningful for positive random variables (X ≥ 0) and is 0 < τ2 < 1.

Other authors (most notably J.R.M.Hosking) lack the subscripted 2 on τ2, but the sub-
script explicitly is used here and preferred by the author to draw a connection to the
second element of a vector of L-moment ratios.2 As seen in many examples herein, the
lmoms() and vec2lmom() functions (along with many more) return an L-moment ratio
vector in the $ratios attribute. By definition for symmetrical distributions, it can be
shown that

τr = 0 for odd r (6.27)

Several L-moments, unlike the theoretically unbounded3 product moments G (skew)
andK (kurtosis) for n→∞, are bounded (Hosking, 1990, Theorem 2). Two useful exam-
ples of boundedness for L-moment ratios are

−1 < τr < 1 for r ≥ 3 (6.28)

2 Another reason advocated by the author for τ2 is that the symbol τ remains available to refer
to the more venerable Kendall’s Tau statistic (Hollander and Wolfe, 1973, chap. 8) in investigative
settings involving L-moments and correlation (independence) tests by Kendall’s Tau.
3 The irony is noted that these product moments have no theoretical upper limit of magnitude,
yet suffer from algebraic bounds based on sample size as discussed in Chapter 4.
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1
4
(5τ 23 − 1) ≤ τ4 < 1 (6.29)

which in the later inequality τ4 must also satisfy

τ4 ≥ −1/4 (6.30)

These bounds are useful and are philosophically attractive because the magnitudes of
τ3 and τ4 are much more constrained than are G and K , and more importantly, these
bounds are not a function of sample size, unlike the algebraic sample-size bounds forG
andK . Hence, relative comparisons of the quantification of the concepts of skewness and
kurtosis for samples and distributions aremore informative using L-moments. Additional
intra-moment constraints of L-moment ratios exist, Jones (2004) shows that τ6 ≥ −1/6

and a lower bound for τ6 of

1
25

(42τ4
2 − 14τ4 − 3) < τ6 (6.31)

which in lower bound, Hosking (1996a) provides further refinement.

The systemof linear equations relating L-momentsλr to probability-weightedmoments
βr of Chapter 5 can be obtained by

λr+1 =
r∑

k=0

(−1)r−k
(
r

k

)(
r + k

k

)
βk for r ≥ 0 (6.32)

from which the first five4 L-moments in terms of probability-weighted moments are

λ1 = β0 (6.33)

λ2 = 2β1 − β0 (6.34)

λ3 = 6β2 − 6β1 + β0 (6.35)

λ4 = 20β3 − 30β2 + 12β1 − β0 (6.36)

λ5 = 70β4 − 140β3 + 90β2 − 20β1 + β0 (6.37)

If x(F ) is a valid QDF, then the L-moments can be computed directly by numerical
integration to either bypass or otherwise verify the algorithms of many functions in Chap-
ters 7–9 that convert distributions set by known parameters into L-moments. The general

4 Five are shown in the system of equations here instead of the four in parallel constructs in this
dissertation because of the τ5 expression for the Kumaraswamy distribution.
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equation derived from eqs. (3.4) and (6.1) for computing L-moments given a QDF is

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
r!

(r − k − 1)! k!

×
∫ 1

0

x(F )× F r−k−1 × (1− F )k dF (6.38)

Hosking (2006) comments that each λr can be written as the expectations of extreme
order statistics such as by

λr =
r∑

k=1

(−1)r−kk−1
(
r − 1

k − 1

)(
r + k − 2

k − 1

)
E[Xk:k] (6.39)

in terms of maxima order statistics. The set of λr in terms of extreme (minima and max-
ima) order statistics therefore also characterize a distribution. However, the extreme order
statistics do so with redundancy (see Chapter 3, page 65). Hosking (2006, p. 193) shows
that a “wide range of distributions can be characterized by their [λr] with no redundancy.”
In other words, the “characterization by [λr] is nonredundant, in that if even one [λr] is
dropped from the set the remaining [λr] no longer [uniquely] suffice to determine the
distribution” (Hosking, 2006, p. 194). As a result, Hosking (2006, p. 198) suggests that
the distribution information contained in λr is maximally independent of information
contained by the remaining λr−1 in the set. By Hosking’s logic and remark, L-moments
are “particularly suitable as summary statistics of a distribution.”

Expansion of eq. (6.39) results in the following system of equations for the first four λr
in terms of the largest order statistics

λ1 = E[X1:1] (6.40)

λ2 = E[X2:2]− E[X1:1] (6.41)

λ3 = 2E[X3:3]− 3E[X2:2] + E[X1:1] (6.42)

λ4 = 5E[X4:4]− 10E[X3:3] + 6E[X2:2]− E[X1:1] (6.43)

This system of equations is demonstrated later in this chapter (see example 6–10 ).
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Using R Using R

The theoLmoms() provides numerical integration by eq. (6.38) for an arbitrary
moment order, and the function is used in example 6–1 . In the example, a standard Nor-
mal distribution is parameterized in the lmomco fashion by the vec2par() function and
set into NO1. The NO1 parameter list, which is a type of lmomco parameter list (see page 163
and ex. 7–1 ), is passed to the theoLmoms() with a request to compute the first nmom
L-moments. The eight L-moments, which are computed by numerical integration, are
shown.

6–1
N01 <- vec2par(c(0,1), type="nor") # standard normal distribution
theoLmoms(N01, nmom=4) # compute the first nmom L-moments
$lambdas
[1] -4.360355e-17 5.641895e-01 -7.401487e-17 6.917017e-02
$ratios
[1] NA -1.293907e+16 -1.311880e-16 1.226009e-01
$trim
[1] 0
$source
[1] "theoLmoms"

As the output shows, the λr for odd r are effectively zero because the Normal dis-
tribution is symmetric. The example demonstrates that odd-order L-moment ratios are
consistent with the observation that the odd-order ratiosmeasure distribution asymmetry.
Specifically, each odd-order ratio provides for a progressively higher measure of distribu-
tion asymmetry. The theoLmoms() can be used to compute L-moments and L-moment
ratios for QDFs for which analytical or numerical solutions have not been developed. The
theoLmoms() function is useful to verify the computations of other algorithms in several
examples in this dissertation. J

L-moments and probability-weighted moments are linear combinations of each other.
Conversion between the two moment types is readily made using the lmom2pwm() func-
tion as example 6–2 demonstrates for λ1 = 100, τ2 = 0.45, τ3 = −0.3, and τ4 = 0.4.

6–2
lmr <- vec2lmom(c(100,0.45,-0.3,0.4), lscale=FALSE)
lmom2pwm(lmr)
$betas
[1] 100.00000 72.50000 53.58333 42.77500
$source
[1] "lmom2pwm"
pwm2lmom(lmom2pwm(lmr))
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$lambdas
[1] 100.0 45.0 -13.5 18.0
$ratios
[1] NA 0.45 -0.30 0.40

$source
[1] "pwm2lmom"

In the example, the numerical equivalency of the L-moments in variable lmr to those
in $lambda and $ratios of the terminating output is evident. Readers are asked to note
in example 6–2 that the use of the vec2lmom() function differs from previous demon-
strations because the coefficient of L-variation τ2 is used instead of λ2. The argument
lscale=FALSE, thus, is needed in the example. J

The validity of L-moments are readily verified by the are.lmom.valid() function.
The bounds of the L-moments supported by the function are shown in eqs. (6.22), (6.28),
and (6.29). Example 6–3 demonstrates use of the function.

6–3
lmr <- list(lambdas=c(100,-20), ratios=c(NA,NA))
are.lmom.valid(lmr) # fails on L2 > 0
[1] FALSE

# The following fails on abs(T3) <= 1
are.lmom.valid(list(lambdas=c(100, 20, -80),

ratios=c( NA, 0.20, -4)))
[1] FALSE

are.lmom.valid(list(L1=1, L2=2, TAU3=0.4, TAU4=-0.04)) # works
[1] TRUE

The third and terminal use of the are.lmom.valid() function in example 6–3 has
a different list style passed into it compared to the other two. The lmorph() function
is used for internal conversion. Thus, the different implementation styles of L-moments
within the lmomco package also are shown. The styles are discussed in more detail in
Section 6.2.2. J

Finally, the author suggests that the following algorithmbe considered in circumstances
in which the sample L-moments by unbiased estimators are invalid. Such a circumstance
might occur in large datamining operations inwhich the sample L-moments (next section)
of hundreds or thousands of observed data sets are computed. It is possible that in a few
samples, typically very small, that invalid L-moments would be computed. The unbiased
sample L-moments are computedwithlmoms() and then tested byare.lmom.valid().
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If the unbiased sample L-moments are not, then L-moments are computed through the
sample probability-weighted moments that are based on plotting positions of the Gener-
alized Extreme Value distribution.

6–4
fake.dat <- rnorm(10) # generate some fake data
lmr <- lmoms(fake.dat) # compute L-moments
if(! are.lmom.valid(lmr)) {

lmr <- pwm2lmom(pwm.gev(fake.dat))
}

J

Eqs. (6.8) and (6.9) both provide expressions for λr in terms of the CDF. At first review,
both equations appear not too difficult to implement in R; however, eq. (6.9) is less com-
patible with vectorization of R as provided by the integrate() function.5 Example 6–5

implements eq. (6.8) instead of eq. (6.9) because of themuch greater algorithmic burden of
placing the series ofLr(u) of eq. (6.10) inside the integral. The code example 6–5 provides
an excellent example of the congruent use of function within function (and within func-
tion) development, numerical integration, and series solution. The algorithmic flexibility
of R is shown.

6–5
"lambda.by.cdf" <-
function(r, para, cdf=NULL, lower=-Inf, upper=Inf) {

sfunc <- function(j) {
tmpA <- (-1)^j * choose(r-2,j) * choose(r, j+1)
RspaceIntegral <- function(x, j) {

Fx <- cdf(x, para)
return( Fx^(r-j-1) * (1-Fx)^(j+1) )

}
tmpB <- integrate(RspaceIntegral, lower, upper, j=j)
tmpB <- tmpB$value
return(tmpA*tmpB)

}
tmp <- sum(sapply(0:(r-2), sfunc))/r
return(tmp)

}

The function lambda.by.cdf() is demonstrated in example 6–6 for the standard
Normal distribution by comparison of select λr from the theoLmoms() function, which
5 The author initially tried to implement eq. (6.9) as this equation seemed somehow easier than
eq. (6.8)—the author failed after considerable and frustrating efforts. However, success was found
for eq. (6.8) and is shown in this dissertation.
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uses the QDF of the Normal distribution, to those from lambda.by.cdf(), which uses
the CDF of the distribution.

6–6
NORpar <- vec2par(c(0,1), type="nor")
lmr.by.QF <- theoLmoms(NORpar, nmom=8)
print(lmr.by.QF$lambdas[c(2,4,8)])
[1] 0.56418953 0.06917017 0.01232133

L2 <- lambda.by.cdf(2, NORpar, cdf=cdfnor)
L4 <- lambda.by.cdf(4, NORpar, cdf=cdfnor)
L8 <- lambda.by.cdf(8, NORpar, cdf=cdfnor)
print(c(L2,L4,L8))
[1] 0.56418958 0.06917061 0.01232370

Example 6–6 shows that λ2, λ4, and λ8 are all equivalent. (Odd order λr are not shown
as these are zero for the Normal distribution.) The results demonstrate the reliability of
the lambda.by.cdf() function. J

6.2.2 Sample L-moments

The sample L-moments are computed for a sample from the sample order statistics x1:n ≤
x2:n ≤ · · · ≤ xn:n. The sample order statistics thus are estimated by simply sorting the
data in ascending order. The sample L-moments are

λ̂r =
1

r

(
n

r

)−1 n∑
i=1

[
r−1∑
j=0

(−1)j
(
r − 1

j

)(
i− 1

r − 1− j

)(
n− i
j

)]
xi:n (6.44)

The sample L-moment ratios are

τ̂2 = λ̂2/λ̂1 = sample coefficient of L-variation (6.45)

τ̂3 = λ̂3/λ̂2 = sample L-skew (6.46)

τ̂4 = λ̂4/λ̂2 = sample L-kurtosis (6.47)

and for r ≥ 5, which are unnamed, are

τ̂r = λ̂r/λ̂2 (6.48)
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The author recognizes that the sample L-moments (and sample probability-weighted
moments) in lmomco are not computationally efficient. For efficiency, Wang (1996b)
describes direct sample estimators of τ̂r for r ≤ 4 and provides FORTRAN source code
based on expansion of eq. (6.44). The FORTRAN algorithm is fast. However, the lmomco
package uses the choose() function of R for the binomial coefficients (a b) to support an
arbitrary order r of L-moments. Binomial coefficient computation is seen example 5–4

on page 106.

Using R Using R

The sample L-moments are readily computed as shown in example 6–7 . The output of
the lmoms() (lmomco), samlmu() (lmom), and Lmoments() (Lmoments) functions show
that the respective package authors (Asquith, 2011; Hosking, 2009a; Karvanen, 2009) have
differing implementation ideas for an “L-moment” object. For the lmomco package, this
data structure is known as the “lmomco L-moment list.” In general, these L-moment
objects interact in package-specificwayswith other functions available in the twopackages
and are thus evidently intended somewhat for intra-package purposes.

6–7
data <- rnorm(30) # 30 standard normal samples
lmr1 <- lmoms(data) # from package lmomco
lmr2 <- samlmu(data) # from package lmom
lmr3 <- Lmoments(data) # from package Lmoments
print(lmr1) # L-moments (and ratios) from the lmomco package
$lambdas
[1] -0.14923254 0.50167639 0.01407900 0.09680829 -0.03395663
$ratios
[1] NA -3.36170910 0.02806390 0.19296960 -0.06768633
$trim
[1] 0
$leftrim
NULL
$rightrim
NULL
print(lmr2) # L-moments (and ratios) from the lmom package

l_1 l_2 t_3 t_4
-0.1492325 0.5016764 0.0280639 0.1929696

print(lmr3) # L-moments from the Lmoments package
L1 L2 L3 L4

[1,] -0.1492325 0.5016764 0.01407900 0.0968083

J
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It is informative to present the L-moment list with discussion. An lmomco L-moment
list is created in example 6–8 and displayed by the str() function.

6–8
LMR <- vec2lmom(c(-450, 23, -0.1, 0.3))
str(LMR)
List of 9
$ L1 : num -450
$ L2 : num 23
$ TAU3: num -0.1
$ TAU4: num 0.3
$ TAU5: NULL
$ LCV : num -0.0511
$ L3 : num -2.3
$ L4 : num 6.9
$ L5 : NULL

As shown in the output of example 6–8 , the L-moments Lx and L-moment ratios LCV
and TAUx self-document or label the values (λ2 = 23 or τ3 = −0.1). This nomenclature
style for an lmomco L-moment list, however, is restrictive. The nomenclature would rapidly
become burdensome as the number of L-moments increases. An alternative data structure
is produced in example 6–9 .

6–9
lmorph(LMR) # make the list conversion
$lambdas
[1] -450.0 23.0 -2.3 6.9
$ratios
[1] NA -0.05111111 -0.10000000 0.30000000
$trim
[1] 0
$leftrim
NULL
$rightrim
NULL
$source
[1] "lmorph"

It is seen in the morphed LMR list that the values have been vectorized in $lamdas and
$ratios—the greater programming flexibility of using vectors hopefully is self evident.
The lmorph() function thus converts (and visa versa) the L-moment objects into differing
data structures. The structure shown is useful because other L-moment types, such as the
TL-moments can be supported. These L-moment types require additional documentation
concerning the trimming of the sample. Finally, the $source attribute, as seen in other
special lmomco lists, identifies the name of the called function.
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There are two L-moment data structures in lmomco, and this is a historical artifact. The
fact that there are two primary structures is partly a reflection of changing design ideas
and decisions by the author. The form seen in example 6–9 is preferable because of the
vector forms of λr and τr, which can grow to arbitrary length, can readily be queried to
extract specific λr or τr in a programming context. J

Consideration of eq. (6.39) results in an another method to compute sample L-moments.
The equation shows that each λr can be written and computed as a linear combination of
maxima order statistics. Concerning expressions of L-moments in terms of maxima order
statistics, it is informative to remark that the numerical representation of values less than
the mean (E[X1:1]) are still required. However, these representations are tacitly not used
in the computation of the L-moments, which is demonstrated in example 6–10 .

In the example, the maxOstat.system() function is created to compute the coeffi-
cients on the linear system of equations by eq. (6.39) and used for r ≤ 4 to set the respec-
tive coes variables. The example sets the values λ1 = 1200, λ2 = 500, and τ3 = 0.3 in the
lmr variable. The parameters of the Generalized Extreme Value distribution as computed
from these L-moments and set into GEVpar.

6–10
"maxOstat.system" <-
function(r=1) {

sapply(1:r, function(k,r) { (-1)^(r-k)/k * choose(r-1,k-1) *
choose(r+k-2,k-1) }, r=r)

}
coes1 <- maxOstat.system(1); coes2 <- maxOstat.system(2)
coes3 <- maxOstat.system(3); coes4 <- maxOstat.system(4)
lmr <- vec2lmom(c(1200, 500, 0.3)) # set first three L-moments
GEVpar <- pargev(lmr) # perform parameter estimation for GEV
# Perform large samplings of samples the four
# sample sizes, extract the maximum each time and finally compute
# the mean of each.
x <- rlmomco(2000, GEVpar) # simulate 2000 values for resampling
samlmr <- lmoms(x) # compute sample estimates in typical fashion
E11 <- mean(replicate(100000, max(sample(x, 1, replace=TRUE))))
E22 <- mean(replicate(100000, max(sample(x, 2, replace=TRUE))))
E33 <- mean(replicate(100000, max(sample(x, 3, replace=TRUE))))
E44 <- mean(replicate(100000, max(sample(x, 4, replace=TRUE))))
lam1 <- E11*coes1
lam2 <- E22*coes2[2] + E11*coes2[1]
lam3 <- E33*coes3[3] + E22*coes3[2] + E11*coes3[1]
lam4 <- E44*coes4[4] + E33*coes4[3] + E22*coes4[2]+ E11*coes4[1]
t3 <- lam3/lam2; t4 <- lam4/lam2
cat(c("# By maxima:",

129



Texas Tech University,William H. Asquith, May 2011

round(c(lam1,lam2,t3,t4), digits=3),"\n"))
# By maxima: 1200.245 493.06 0.301 0.281

cat(c("# By lmoms():",
round(c(samlmr$lambdas[1:2],

samlmr$ratios[3:4]), digits=3),"\n"))
# By lmoms(): 1198 497.731 0.294 0.206

Subsequent operations in example 6–10 demonstrate the viability of sample L-moment
computation via eq. (6.39) and substitution of E[Xk:k] with a sample counter part. A ran-
dom sample of n = 2,000 values is created in variable x by the rlmomco() function. The
following four operations, which set the Exx variables, compute the expected values of
the first four maxima order statistics based on bootstrapping by the sample() function.
The sample L-moments are computed from these expectations and the coefficients and
set into the respective lamx variables. Finally, the two cat() functions output the results.
The results are similar and demonstrate the validity of eq. (6.39). J

6.2.3 Visualization of L-moment Weight Factors

The relative contribution of individual data values on the computation of λ̂r can be
depicted by visualization of L-moment weight factors. To begin, the sample L-moments
λ̂r are defined as weighted-linear combinations of the sample values. In particular, λ̂r
can be shown to be linear combinations of the ordered sample (x1:n ≤ x2:n ≤ · · · ≤ xn:n)
and a weight factor w(r)

j:n. The equation is

λ̂r =
1

n

n∑
j=1

w
(r)
j:n xj:n (6.49)

where the weights are computed by

w
(k)
j:n =

min{j−1, k−1}∑
i=0

(−1)k−1−i
(
k − 1

i

)(
k − 1 + i

i

)(
j − 1

i

)
/

(
n− 1

i

)
(6.50)

The w(r)
j:n (weights), when graphically depicted, visually show the relative contribution of

each data value on the value for λ̂r. Readers should note that the quantity 1/n could be
combined withw(k)

j:n for an alternative form—attention is needed in the form of the weight
factor when comparing L-moment computations. When the weight factors are in the form
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w
(k)
j:n/n (note the 1/n), then the weights express, with regard to sign, the relative amount

that each sample order statistic contributes to a given λr.

Using R Using R

The w(r)
j:n for a sample n = 19 are shown in figure 6.1. The figure shows the relative

contribution of each ordered observation on the summation for the L-moment. The plots
were generated by example 6–11 and are based on the Lcomoment.Wk() function. This
example reproduces the weight factor distributions as shown in a figure by Hosking and
Wallis (1997, fig. 2.6)—the τ6 has been added for this dissertation.

6–11
n <- 19; k <- seq(1,n); Wk1 <- vector(mode = "numeric")
Wk2 <- Wk3 <- Wk4 <- Wk5 <- Wk6 <- Wk1
lab <- "RANK OF DATA VALUE, k"
# define pending graphics to two columns of three plots
#pdf("lmomWK.pdf")
layout(matrix(1:6, ncol=2))

for(r in k) Wk1[r] <- Lcomoment.Wk(1,r,n)
plot(k,Wk1, type="h", ylim=c(-1,1), xlab=lab,

ylab="Wk1, MEAN")
points(k,Wk1,pch=16); abline(0,0)
for(r in k) Wk2[r] <- Lcomoment.Wk(2,r,n)
plot(k,Wk2, type="h", ylim=c(-1,1), xlab=lab,

ylab="Wk2, L-SCALE")
points(k,Wk2,pch=16); abline(0,0)
for(r in k) Wk3[r] <- Lcomoment.Wk(3,r,n)
plot(k,Wk3, type="h", ylim=c(-1,1), xlab=lab,

ylab="Wk3, L-SKEW")
points(k,Wk3,pch=16); abline(0,0)
for(r in k) Wk4[r] <- Lcomoment.Wk(4,r,n)
plot(k,Wk4, type="h", ylim=c(-1,1), xlab=lab,

ylab="Wk4, L-KURTOSIS")
points(k,Wk4,pch=16); abline(0,0)
for(r in k) Wk5[r] <- Lcomoment.Wk(5,r,n)
plot(k,Wk5, type="h", ylim=c(-1,1), xlab=lab,

ylab="Wk5, TAU5")
points(k,Wk5,pch=16); abline(0,0)
for(r in k) Wk6[r] <- Lcomoment.Wk(6,r,n)
plot(k,Wk6, type="h", ylim=c(-1,1), xlab=lab,

ylab="Wk6, TAU6")
points(k,Wk6,pch=16); abline(0,0)
#dev.off()

J
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Figure 6.1. Graphics showing the weight factors of sample L-moment computation for each obser-
vation from a n = 19 sample on the respective L-moment from example 6–11

To conclude this section, it is informative to show an example of the L-moment weight
factors for proportional computation of the L-moments from a sample. In example 6–12 ,
it is shown for a sample n = 4 that each value contributes 0.25, whereas for the λ̂2, the
order statistic x2:4 = 20 contributes −0.0833. Finally, the last two lines of output shows
L-moment equivalence—note that lmoms() does not use the Lcomoment.Wk() function.
Therefore, a double check of sorts is provided.

6–12
fakedat <- sort(c(-10, 20, 30, 40))
n <- length(fakedat)
Wk1 <- Wk2 <- Wk3 <- Wk4 <- vector(mode="numeric", length=n);
for(i in 1:n) {
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Wk1[i] <- Lcomoment.Wk(1,i,n)/n
Wk2[i] <- Lcomoment.Wk(2,i,n)/n
Wk3[i] <- Lcomoment.Wk(3,i,n)/n
Wk4[i] <- Lcomoment.Wk(4,i,n)/n

}
cat(c("# Weights for mean", round(Wk1, digits=4), "\n"))
# Weights for mean 0.25 0.25 0.25 0.25
cat(c("# Weights for L-scale", round(Wk2, digits=4), "\n"))
# Weights for L-scale -0.25 -0.0833 0.0833 0.25
cat(c("# Weights for 3rd L-moment", round(Wk3, digits=4), "\n"))
# Weights for 3rd L-moment 0.25 -0.25 -0.25 0.25
cat(c("# Weights for 4th L-moment", round(Wk4, digits=4), "\n"))
# Weights for 4th L-moment -0.25 0.75 -0.75 0.25

my.lams <- c(sum(fakedat*Wk1), sum(fakedat*Wk2),
sum(fakedat*Wk3), sum(fakedat*Wk4))

cat(c("# Manual L-moments:", my.lams, "\n"))
# Manual L-moments: 20 13.333 -5 5
cat(c("# lmomco L-moments:",lmoms(fakedat, nmom=4)$lambdas,"\n"))
# lmomco L-moments: 20 13.333 -5 5

J

6.2.4 Reference Frame Comparison Between L-moments and Product Moments

The large conceptual leap of order-based statistics, such as the L-moments, is that dis-
tributional information contained in a sample is contained both in the spaces between
observations and in the distances that observations are from the center of the distribu-
tion. Recognition of this duality is important as the duality might make the concepts and
interpretations of L-moments compared to product moments easier to understand.

The author suggests that L-moments and product moments should be considered not
just analogous but conceptually identical measures of the same geometric properties of
a distribution, but moment-specific measurements differ according to the frame of refer-
ence. The reference frame concept is familiar to students of engineering and physics and
therefore expository discussion is needed. One moment-type (L-moments) corresponds
to the Lagrangian view, the other (product moments) corresponds to the Eulerian view
of fluid movement.6

6 The author acknowledges the “reference frame” idea and written suggestions from George
“Rudy” Herrmann in fall of 2008.
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The Lagrangian view is where the reference frame moves with the fluid, and the Eule-
rian reference system is where the reference frame is fixed and fluid moves past the refer-
ence frame. It can be conceptualized that L-moments often perform better than product
moments because the overall set of measures has a narrower range of variation (is more
compact), which allows for greater relative precision.

The Lagrangian-Eulerian comparison might be arcane, so consider the reference-frame
comparison a little further:

• With L-moments, one traverses an ordered sample by traveling from one point to the
next, the length of each leg of the trip is recorded, and various quantities based on
these lengths are computed.

• With product moments, one traverses a random sample by traveling from the mean
to each individual point in succession with no regard to order (data magnitude), the
length of each individual and non-interacting trip (the Eulerian view) is recorded,
and various quantities based on powers of the lengths are computed.

The total travel distance for the information content of the sample is greater in the Eulerian
view and the average travel distance is greater as well as variously exponentiated. Hence,
travel with this view is much less efficient (not the statistical meaning of efficient).

In an effort use other language for description, L-moments are “anchored” to the refer-
ence scale differently through ordering and intra-sample computations.Whereas, product
moments are explicitly anchored to the reference scale by the mean and order is unimpor-
tant. Finally to conclude this discussion, it can be considered that

L-moments are statistics of “jumps” between the ordered sample values,
whereas

Product moments are statistics of “moment arms” about the mean.
Hopefully, this conceptualization and distinct will aid some readers in understanding the
differences between the two moment definitions.
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Using R Using R

The comparison of the reference frame of L-moments andproductmoments is enhanced
upon visualization of the differences in travel distances. In example 6–13 , a random sam-
ple of n = 100 is drawn from an Exponential distribution. The absolute values of the
trip distance from each observation to the mean are computed and set in the PM variable.
The n− 1 intra-sample distances are computed and set in the LM variable. The values of
the two variables are shown. Clearly, the travel distances for the computation of product
moments (PM) are greater than those for the computation of L-moments (LM). The exam-
ple concludes by plotting the results in figure 6.2. The figure shows that the intra-sample
distances and individual trip distances to the mean are considerably smaller in magni-
tude and have smaller variation—hence, a source of the desirable sampling properties of
L-moments that are described in Section 6.5.

6–13
n <- 100; fake.dat <- sort(rexp(n)) # n vals from Exponential
LM <- fake.dat[2:n] - fake.dat[1:n-1] # each intra-sample length
PM <- abs(fake.dat - mean(fake.dat)) # each trip from mean
cat(c( "Total LM length =", round(sum(LM), digits=2),

" and Total PM length =", round(sum(PM), digits=2),"\n\n"))
Total LM length = 5.53 and Total PM length = 79.1

#pdf("refframe.pdf")
plot(PM, ylab="INTRA-SAMPLE OR TRIP DISTANCE") # open circles
points(LM, pch=16) # solid circles
#dev.off()

J

6.3 The Method of L-moments

The method of L-moments, as the name suggests, is a parameter estimation technique
that is conceptually the same as themethods of product or probability-weightedmoments
already described. Specifically, themethod of L-moments is a method of parameter esti-
mation in which the parameters of a distribution are chosen so as to equate the theoretical
L-moments of the distribution to the sample L-moments, or in other words, the param-
eters Θ are chosen such that λr = λ̂r for the r number of parameters. The method is
demonstrated by analytical derivation and then numerical example in this section—the
method is used throughout this dissertation.
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Figure 6.2. Comparison of intra-sample distances (solid circles) and individual trip distance to
mean (open circles) for respective L-moment and product moment computation from exam-
ple 6–13

The analytical mathematics to illustrate the method of L-moments are sufficiently
described by derivation of the first two L-moments λ1 and λ2 of theUniform distribution.
The Uniform distribution is very simple. The QDF of the distribution with parameters α
and β for nonexceedance probability F is

x(F ) = α + (β − α)F (6.51)

Now using eq. (6.11), λ1 is defined by

λ1 =

∫ 1

0

x(F ) dF (6.52)

where upon substitution and expansion
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λ1 = α

∫ 1

0

dF + β

∫ 1

0

F dF − α
∫ 1

0

F dF

= αF

∣∣∣∣F=1

F=0

+
β

2
F 2

∣∣∣∣F=1

F=0

− α

2
F 2

∣∣∣∣F=1

F=0

= α +
β

2
− α

2
(6.53)

yields with simplification
λ1 = 1

2
(α + β) (6.54)

And now using eq. (6.12), λ2 is defined by

λ2 =

∫ 1

0

x(F )× (2F − 1) dF (6.55)

where upon substitution and expansion

λ2 = 2α

∫ 1

0

F dF + 2β

∫ 1

0

F 2 dF − 2α

∫ 1

0

F 2 dF − λ1

=
2α

2
F 2

∣∣∣∣F=1

F=0

+
2β

3
F 3

∣∣∣∣F=1

F=0

− 2α

3
F 3

∣∣∣∣F=1

F=0

− λ1

= α +
2β

3
− 2α

3
− β

2
− α

2
(6.56)

yields with simplification
λ2 = 1

6
(β − α) (6.57)

Thus, the first two L-moments of the Uniform distribution are

λ1 = 1
2
(α + β) (6.58)

λ2 = 1
6
(β − α) (6.59)

The Uniform distribution is of limited interest in distributional analysis with the obvi-
ous and considerable exception of UNI(α=0, β=1), which is equivalent to the default of
the R function runif(). The Uniform distribution and the runif() function are critical
for simulation of random variables. Themean (andmedian) nonexceedance probability of
the UNI(α=0, β=1) distribution is 0.5, which clearly is (0 + 1)/2 by eq. (6.58). Likewise,
it follows that the λ2 of the distribution by eq. (6.59) is 1/6.
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Suppose that the sample values λ̂1 and λ̂2 are 1 and 3, respectively, an equivalent Uni-
form distribution fit by the method of L-moments is established by

λ̂1 = 1 = 1
2
(α + β) =⇒ α = 2− β (6.60)

λ̂2 = 3 = 1
6
(β − α) =⇒ β = 18 + α (6.61)

which upon further simplification yieldsUNI(α=−8, β=10). For the example, the sample
L-moments are thus equated to the theoretical L-moments of the distribution by adjusting
(well directly solving for in this situation) the parameters—the method of L-moments
is demonstrated. Some distributions are so complex that numerical methods must be
employed to perform the method of L-moments. (Numerical methods also are common
with use of product moments.)

Using R Using R

The method of L-moments is further demonstrated in example 6–14 . In the exam-
ple, n = 10,000 values from a Gamma distribution having respective scale and shape
parameters α = 3 and β = 4 are simulated using the rgamma() function. The sample
L-moments are computed by thelmoms() function.Next, the parameters are estimated by
the lmom2par() function and an n = 10,000 sample is simulated using the rlmomco()
function instead of the rgamma() function. The function concludes with a report of four
(2:5) of the seven summary statistics returned by the summary() function.

6–14
n <- 10000 # simulated ten thousand samples
fake1.dat <- rgamma(n, scale=3, shape=4) # simulated values
lmr <- lmoms(fake1.dat) # compute the sample L-moments

# Solve for the parameters such that the theoretical L-moments
# of the distribution are set equal to the sample L-moments
# in the variable lmr.
PARgam <- lmom2par(lmr, type="gam") # L-moments --> parameters
fake2.dat <- rlmomco(n, PARgam) # simula. from gamma in lmomco
Rsum1 <- summary(fake1.dat, digits=5) # store the basic summary
Rsum2 <- summary(fake2.dat, digits=5) # stats in many variables
cat(c( names(Rsum1[2:5]),"\n", Rsum1[2:5],"\n", Rsum2[2:5],"\n"))
1st Qu. Median Mean 3rd Qu.
7.5774 11.054 12.019 15.388
7.5626 10.983 11.994 15.255
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The summary statistics (minus the minimum and maximum) values are shown at the
end of the example. The two rows of summary statistics are effectively identical.Many vari-
ations (and admittedly copies) of the algorithmic theme of the example are used through-
out this dissertation. J

6.4 TL-moments—Definitions and Math

A special class of L-moments are trimmed L-moments (TL-moments). Elamir and Seheult
(2003) describe TL-moments,which are based on trimming of the t1-smallest and t2-largest
order statistics of a distribution or values from a sample. The TL-moments can be useful
as they can extend L-moment-based statistics into difficult to work with distributions
such as the Cauchy, which has infinite expectations of extreme value statistics, or increase
the viable parameter space of a distribution such as that of the Generalized Lambda dis-
tribution. The TL-moments can provide further robustness relative to the L-moments
because they provide various levels of symmetrical or asymmetrical trimming. However,
this robustness comes at the cost of reducing the “information content” of the sample.
However, for extremely heavy-tailed distributions TL-moments are useful in practice (Kar-
vanen, 2006; Hosking, 2007a; Ahmad and others, 2011).

6.4.1 Theoretical TL-moments

The theoretical TL-moments for a real-valued random variableX with a QDF x(F ) are
defined as

λ(t1,t2)r =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E[Xr+t1−k:r+t1+t2 ] (6.62)

and can be computed by

λ(t1,t2)r =
1

r︸︷︷︸
average
of terms

r−1∑
k=0

differences︷ ︸︸ ︷
(−1)k

(
r − 1

k

)
︸ ︷︷ ︸

combinations

sample size︷ ︸︸ ︷
(r + t1 + t2)! I

(t1,t2)
r,k

(r + t1 − k − 1)!︸ ︷︷ ︸
left tail

(t2 + k)!︸ ︷︷ ︸
right tail

(6.63)

where
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I
(t1,t2)
r,k =

∫ 1

0

x(F )︸ ︷︷ ︸
quantile
function

×
left tail︷ ︸︸ ︷

F r+t1−k−1×

right tail︷ ︸︸ ︷
(1− F )t2+k dF (6.64)

where t1 represents the trimming level of the t1-smallest, t2 represents the trimming level
of the t2-largest values, r represents the order of the TL-moments. The overbraces and
annotations are added to this particular definition of an L-moment to conceptualize how
the mathematics interact. For the condition t1 = t2 = 0, then eq. (6.38) is recovered.

Additional formulations of the theoretical TL-moments exist. Letting P
∗(t1,t2)
r (F )

denote shifted Jacobi polynomials as

P ∗(t1,t2)r (F ) =
r∑
j=0

(−1)r−j
(
r + t2
j

)(
r + t1
r − j

)
F j(1− F )r−j (6.65)

Hosking (2007b) shows that the TL-moments (and L-moments by t1 = t2 = 0) can be
expressed in terms of the kth derivative for k = 0, 1, 2, . . . , r of the QDF x(k)(F ) as

λ
(t1,t2)
r+1 =

(r − k)!(r + t1 + t2 + 1)!

(r + 1)!(r + t1)!(r + t2)!

×
∫ 1

0

F t1+k(1− F )t2+k P
∗(t1,t2)
r−k (F )x(k)(F ) dF (6.66)

and in terms of the CDF F (x), if the derivatives of the QDF do not exist, as

λ
(t1,t2)
r+1 =

(r − 1)!(r + t1 + t2 + 1)!

(r + 1)!(r + t1)!(r + t2)!

×
∫ ∞
−∞

[F (x)]t1+1[(1− F (x))]t2+1 P
∗(t1+1,t2+1)
r−1 F (x) dx (6.67)

The TL-moments are logically extended to TL-moment ratios by

τ
(t1,t2)
2 = λ

(t1,t2)
2 /λ

(t1,t2)
1 forX ≥ 0 (6.68)

and
τ (t1,t2)r = λ(t1,t2)r /λ

(t1,t2)
2 for r > 2 (6.69)

Hosking (2007b) shows that the TL-moment ratios, unlike the L-moment ratios, have
bounds greater than 1 in absolute value for all r ≥ 2, and these bounds increase as r
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increases. The bounds for r > 2 are

|τ (t1,t2)r | ≤ 2(m+ 1)!(r + t1 + t2)!

r(m+ r − 1)!(2 + t1 + t2)!
form = min(t1, t2) (6.70)

and when t1 = t2 = 0, eq. (6.70) reduces to eq. (6.28).

The TL-moments for arbitrary trimming levels are related by the following recurrence
relations by Hosking (2007b)

(2r + t1 + t2 − 1)λ(t1,t2)r = (r + t1 + t2)λ
(t1,t2−1)
r − 1

r
(r + 1)(r + t1)λ

(t1,t2−1)
r+1 (6.71)

(2r + t1 + t2 − 1)λ(t1,t2)r = (r + t1 + t2)λ
(t1−1,t2)
r +

1

r
(r + 1)(r + t2)λ

(t1−1,t2)
r+1 (6.72)

Hosking (2007b, p. 3027) remarks that these relations “are ofmostlymathematical interest,”
but does suggest that they might be useful for τ̂r for r ≥ 3 near their theoretical bounds.
For example, manipulation of the relations provides τ3(0,1) = (τ3− τ4)/[2(1− τ3)], which
could be used to estimate τ̂4 from two different measures of L-skewness.

To conclude this section, Hosking (2007b, pp. 3034–3035) introduces yet another type of
theoretical L-moment called alternative trimmed L-moments. These particular versions
are analogous to, but are numerically distinct from, the “TL-moments” in this dissertation,
which are specifically defined by eq. (6.62). These alternative trimmed L-moments are
attractive because these and their respective L-moment ratios attain the “same range of
feasible values as [the usual] L-moments.” The alternative trimmed L-moments λ̃(t1,t2)r in
terms of the 1st derivative of the QDF x(1)(F ) for r ≥ 2 are

λ̃
(t1,t2)
r+1 =

(t1 + t2 + 1)!

(r − 1)!t1!(t2 + 1)!

×
∫ 1

0

F t1+1(1− F )t2+1 P
∗(1,1)
r−1 (F )x(1)(F ) dF (6.73)

and the λ̃(t1,t2)1 (trimmed mean) is

λ̃
(t1,t2)
1 = E[Xt1+1:t1+t2+1] (6.74)

which can be expanded using eq. (3.4). Finally, Hosking (2007b) ends with an expression
for the alternative trimmed L-moments in terms of order statistic expectations. They are
the quantities
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λ̃
(t1,t2)
r+1 =

(r − 2)!

(r + t1 + t2)!

r−1∑
k=0

(−1)k
(
r − 1

k

)
(t2 + k)!(r + t1 + t2 − k − 1)!

(k + 1)!(r − k)!

× [k(k+1)(t1+r−k) + (r−k)(r−k−1)(t2+k+1)]× E[Xr+t1−k:r+t1+t2 ] (6.75)

It is obvious from eq. (6.75) that eq. (6.62) is much easier to handle, but by using R such
complexity could readily hidden from the user.

Using R Using R

The theoretical TL-moments of a distribution can be computed by numerical integration
with the theoTLmoms() function. For the following example 6–15 , a Generalized Pareto
distribution having parameters (ξ, α, κ) = (10, 5, 0.5) is specified by the vec2par()
function to make an lmomco parameter list (see page 163 and ex. 7–1 ) in the vari-
able PARgpa. The theoTLmoms() function computes the symmetrical (t = t1 = t2 = 1)
TL-moments or λ(1,1)

r = λ(1)
r . The notation t = integer signifies symmetrical trimming. So

for the example, the smallest and largest values are to be trimmed.

6–15
PARgpa <- vec2par(c(10,5,0.5), type="gpa")
lmr <- theoTLmoms(PARgpa, trim=1)

print(lmr)
$lambdas
[1] 13.14285731 0.76190493 0.07696026 0.01998022 0.00745943
$ratios
[1] NA 0.05797103 0.10101032 0.02622404 0.00979050
$trim
[1] 1
$leftrim
NULL
$rightrim
NULL
$source
[1] "theoTLmoms"

By analytical solution τ (1)3 = 10(1 − κ)/[9(κ + 5)] (see Section 8.2.6) and because
κ = 0.5 in the example, τ (1)3 = 0.1010101 as the output from the theoTLmoms() func-
tion shows. The attributes $trim, $leftrim, and $rightrim of the lmomco L-moment
list (see page 127 and exs. 6–7 – 6–9 ) in lmr summarize the t, t1, and t2 settings, respec-
tively, for the call made to the theoTLmoms() function. The $source attribute, as seen in
other special lmomco lists, such as lmomco probability-weighted moment list (see page 108
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and examples 5–8 and 5–9 ) or lmomco parameter list (see page 163 and ex. 7–1 ), identi-
fies the name of the called function. The lmomco TL-moment list in example 6–15 does
not structurally differ from the other lmomco L-moment lists presented in Using R on
page 127. J

6.4.2 Sample TL-moments

The sample TL-moments are computed from a sample using the sample order statistics
x1:n ≤ x2:n ≤ · · · ≤ xn:n by

λ̂(t1,t2)r =
1

r

n−t2∑
i=t1+1


r−1∑
k=0

(−1)k
(
r − 1

k

)(
i− 1

r + t1 − k − 1

)(
n− i
t2 + k

)
(

n

r + t1 + t2

)
xi:n (6.76)

where t represents the trimming level of the t1-smallest or t2-largest values, r represents
the order of the TL-moments.7 If t1 = t2 = 1 and r = 1 for a TL-mean in eq. (6.76), then
the Sen weighted mean of eq. (3.30) results.

Using R Using R

The sample TL-moments with symmetrical t1 = t2 = 1 trimming can be computed
by the TLmoms() (lmomco package) and t1lmoments() (Lmoments package) functions.
(The lmom package by Hosking (2009a) does not currently (2011) support TL-moments.)
Example 6–16 demonstrates both functions for a sample drawn from an Exponential dis-
tribution. The example clearly shows that the Lmoments package has a considerably more
curt data structure. However, the lmomco package provides for asymmetrical trimming.

6–16
fake.dat <- rexp(30) # 30 standard exponential samples
lmr1 <- TLmoms(fake.data, trim=1) # from package lmomco
lmr2 <- t1lmoments(fake.data) # from package Lmoments
print(lmr1) # L-moments from the lmomco package
$lambdas

7 The denominator in eq. (6.76) is a constant and should be pulled out to the left and at the level
of 1/r. However, the constraints of typesetting require the quantity to be typeset where shown.
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[1] 0.7308525656 0.2237977582 0.0581312744 0.0184304696
-0.0009437471

$ratios
[1] NA 0.306214644 0.259749136 0.082353236

-0.004216964
$trim
[1] 1
$leftrim
NULL
$rightrim
NULL
$source
[1] "TLmoms"
print(lmr2) # L-moments from the Lmoments package
[1] 0.73085257 0.22379776 0.05813127 0.01843047

J

The sample TL-moments with at least t1 = t2 = 1 permit estimation for a distribution
such as the Cauchy, which has infinite extreme order statistics. Example 6–17 for sam-
ple sizes of n = 10,000 for 10 simulations shows the individual estimates of the usual
(whole sample) sample mean, which does not exist for the distribution, and also shows
the TL-mean for symmetrical trimming of the two smallest and two largest values. The
results demonstrate that the sample mean is unstable and that the TL-mean (t1 = t2 = 2)
is much more stable and more reliably shows that the central location of the symmetrical
Cauchy is zero.

6–17
n <- 10000; nsim <- 10
trim <- 2 # symmetrical trimming of two values
for(i in seq(1,nsim)) {

data <- rcauchy(n)
xbar <- round(mean(data),3)
lmr <- TLmoms(data, trim=2)
xbarTL <- round(lmr$lambdas[1],3)
cat( c("Mean (unstable)=",xbar,

" TL-mean (trim=2)=",xbarTL, "\n"))
}
Mean (unstable)= -2.743 TL-mean (trim=2)= 0.014
Mean (unstable)= -0.699 TL-mean (trim=2)= -0.01
Mean (unstable)= 0.202 TL-mean (trim=2)= 0.002
Mean (unstable)= -0.006 TL-mean (trim=2)= 0.001
Mean (unstable)= 27.913 TL-mean (trim=2)= -0.048
Mean (unstable)= 0.055 TL-mean (trim=2)= 0.014
Mean (unstable)= 2.185 TL-mean (trim=2)= -0.009
Mean (unstable)= 33.053 TL-mean (trim=2)= 0.016
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Mean (unstable)= 1.375 TL-mean (trim=2)= -0.022
Mean (unstable)= -0.48 TL-mean (trim=2)= 0.006

J

6.5 Some Sampling Properties of L-moments

A feature of the sample L-moments λ̂r is that they are unbiased by definition, and the
sample L-moment ratios τ̂r are nearly so (Hosking and Wallis, 1995, p. 2021). As a result,
specific corrections for sample size biases as seen in the sample product moments, such
as the n − 1 and n − 2 terms, are not present. Further the |τ̂r| for r ≥ 3 have defined
bounds regardless of sample size in contrast to the product moments (see Sections 4.3.3
and 4.3.4).

6.5.1 Estimation of Distribution Dispersion

To demonstrate the estimation of distribution dispersion, unbiased estimation of distribu-
tion dispersion through λ̂2 is shown in example 7–8 on page 175 within ancillary context
of the Normal distribution. Readers are left to generalize example 7–8 for other distribu-
tions of interest. J

6.5.2 Estimation of Distribution Skewness (Symmetry)

To demonstrate the estimation of distribution skewness, a Pearson Type III distribution
is defined as PE3(100, 500, 3) in example 6–18 . The L-moments of this distribution are
computed by the par2lmom() function, and this distribution has τ3 = 0.49. A utility
function afunc() is created to perform a single simulation of the defined sample size,
compute τ̂3, and return the difference between τ̂3 (sampled value) and τ3 (true value). The
replicate() function is used to execute the full simulation run, and the summary()
function is used to compute basic summary statistics of the differences in deltaTau3.

145



Texas Tech University,William H. Asquith, May 2011

6–18
nsam <- 20; nsim <- 2000
SHAPE <- 3
PE3PAR <- vec2par(c(100,500,3), type="pe3")
lmr <- par2lmom(PE3PAR) # compute L-moments
TAU3 <- lmr$TAU3 # value is 0.4889 with SHAPE <- 3

"afunc" <- function(nsam, para, U) {
X <- rlmomco(nsam,para) # draw random samples
tlmr <- lmoms(X) # compute L-moments
return(tlmr$ratios[3] - U) # return the difference

}

deltaTau3 <- replicate(nsim, mean(afunc(nsam, PE3PAR, TAU3)))
summary(deltaTau3)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.46580 -0.09443 -0.01224 -0.01468 0.06798 0.37000

The summary statistics show that the mean difference is near zero, so a conclusion
could be made that τ̂3 is effectively an unbiased estimator of τ3 even for a comparatively
small sample size of n = 20. J

6.5.3 Estimation of Distribution Kurtosis (Peakedness)

To demonstrate the estimation of distribution kurtosis, let a bias ratio be the ratio of the
bias [(sample statistic minus value for population) divided by the population statistic].
The bias ratios for the product moment K̂ and L-moment τ̂4 measures of distribution
kurtosis are compared to the standard Normal distribution in example 6–19 . The results
are shown in figure 6.3. The figure shows that τ̂4 is much more stable or less affected by
sample size than K̂ . In both cases, the statistics over estimate kurtosis (emphasis that term
is conceptual), and this over estimation decreases with increasing sample size. In fact by
n ≈ 40 and greater, τ̂4 appears essentially unbiased. However, K̂ is much more severely
biased than τ̂4 and especially so for small (less than about n = 30) sample sizes. Therefore,
τ̂4 clearly is a preferable estimator of distribution kurtosis.

6–19
nsam <- seq(5,100, by=5)
nsim <- seq(1,10000)
MU <- 0; SIG <- 1; T4 <- 0.1226
THEpar <- vec2par(c(MU,SIG), type="nor") # control dist. here
lme <- pmbias <- lmbias <- pme <- vector(mode = "numeric")
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j <- 0
for(n in nsam) {

j <- j + 1; print(j)
for(i in nsim) {

pm <- pmoms(rlmomco(n,THEpar))
lmr <- lmoms(rlmomco(n,THEpar))
pme[i] <- (pm$kurt - 3)/3
lme[i] <- (lmr$ratios[4] - T4)/T4

}
pmbias[j] <- mean(pme)
lmbias[j] <- mean(lme)

}
#pdf("unbias1.pdf")
plot(nsam,pmbias, type="l", lty=2, lwd=2, ylim=c(-0.05,0.40),

xlab="SAMPLE SIZE", ylab="BIAS RATIO OF KURTOSIS")
lines(nsam,lmbias, lwd=3); abline(0,0)
#dev.off()
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Figure 6.3. Bias ratios of product moment kurtosis (dashed line) and L-kurtosis (solid line) as a
function of sample size for standard Normal distributed data from example 6–19

Example 6–19 is based on simulations of a standard Normal distribution. The results
suggest an important interpretation—τ̂4 is a superior estimator even on the “home turf”
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(the Normal distribution) of the product moments. Emphasis is needed that the Normal
is not a distribution associated with particularly heavy tails. Readers are encouraged to
experiment with other distribution types and parameter combinations. Readers can rerun
the example by changing the distribution type on the line commented as “# control
dist. here.” (See documentation ?dist.list for the dist.list() function for a
list of distribution abbreviations used by the lmomco package.) J

6.5.4 Boundedness of Coefficient of Variation Revisited

In Section 4.3.3, it is graphically demonstrated that the sample coefficient of variation
ĈV is a bounded statistic by eq. (4.25) and that the CV will be underestimated by ĈV .
Succinctly, ĈV is a biased statistic. Although lacking numerical equivalency, the perfor-
mance of τ̂2 and ĈV as measures of relative variability can be loosely compared because
τ̂2 expresses relatively variability in the same fashion as ĈV .

A comparison of relative variability is now made using the Gamma distribution. To
begin, example 6–20 sets the true µ = 3,000 and CV = 0.9 of the distribution in True.
MU and True.CV, respectively. The standard deviation σ and variance σ2 are computed.
The shape and scale parameters of the Gamma (see Section 7.2.3 for definitions) are com-
puted and set into the variables s and a, respectively.

Example 6–20 continues by converting a vector of the parameters into an lmomco param-
eter list (see page 163 and ex. 7–1 ) by thevec2par() function and in turn computing the
true L-moments using the lmomgam() function. The L-moments are set into True.LMR.
The true τ2 is extracted from this list by True.LMR$LCV and subsequently output. The
value is τ2 = 0.460; this is the relative L-variation of the defined Gamma distribution.

6–20
True.MU <- 3000; True.CV <- 0.9
True.SD <- True.MU*True.CV
True.VAR <- True.SD^2
s <- True.VAR/True.MU
a <- True.MU/s # product moments of gamma
True.LMR <- lmomgam(vec2par(c(a,s), type="gam"))
True.LCV <- True.LMR$LCV # extract coe. of L-variation
print(True.LCV)
[1] 0.4599689

J
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Following example 6–20 and using the parameters a and s for selected sample sizes,
a simulation study is performed in example 6–21 . The results are plotted using exam-
ple 6–22 and are shown in figure 6.4.

6–21
nsam <- c( 5, 8, 10, 14, 16, 20, 25, 30, 40, 50,

60, 70, 80, 100, 120, 140, 160, 180, 200)
nsim <- 100
counter <- 0
cv <- vector(mode="numeric")
lcv <- cvtmp <- lcvtmp <- cv
for(n in nsam) {

counter <- counter + 1
for(i in seq(1,nsim)) {

x <- rgamma(n, shape=a, scale=s)
lmr <- lmoms(x)
cvtmp[i] <- sd(x)/mean(x) # CV hat
lcvtmp[i] <- lmr$ratios[2] # Tau2 hat or LCV

}
cv[counter] <- mean(cvtmp)
lcv[counter] <- mean(lcvtmp)

}

It is seen in the figure that the bias ratio of τ̂2 is much closer to unity and even is near
unity at small sample sizes. The ĈV is substantially underestimating the population value
and is still about 20 percent too low for n ≈ 200. The utility of L-moments for estimation
of relative variability of a distribution is evident.

6–22
#pdf("cvlcv.pdf")
plot(nsam, cv/True.CV, type="l",

ylim=c(0.2, 1.1),
xlab="SAMPLE SIZE",
ylab="CV/(True CV) or L-CV/(True L-CV)")

lines(nsam, lcv/True.LCV, lty=2)

legend(50,0.4,
c("PRODUCT MOMENT CV",

"COE. OF L-VARIATION (L-CV)"),
lty=c(1,2,3))

#dev.off()

J
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Figure 6.4. Demonstration of boundedness and bias of ĈV and unbiased property of τ̂2 for a
Gamma distribution having µ = 3,000 and CV = 10 from example 6–22

6.5.5 Consistency and the Use of Logarithmic Transformation

This section is inspired by Hosking and Wallis (1997, pp. 39–40), in general, and their
figure 15, in particular. Their figure depicts the performance of Ĝ and τ̂3 with increasing
sample size, in the context of the effects of a single high outlier on the estimation of Ĝ
and τ̂3.

An estimator is said to be consistent (Ugarte and others, 2008, pp. 252–254), if paraphras-
ing Ugarte and others, “the variance of a consistent estimator decreases as n increases and
that the expected value [of the estimator] tends to [the true value] as n increases.” The con-
sistency of Ĝ in eq. (4.23) and τ̂3 is explored in eq. (6.46) in the context of the log-Normal
distribution. This distribution is positively skewed and hence right-tail heavy. However,
further dilation of the right tail is made by contamination so that the robustness of the
two estimators also can be compared.

A sampled log-Normal distribution is created for a sample of n = 100 in example 6–23

and set into the fake.dat vector. The example also produces the plot of the empirical

150



Texas Tech University,William H. Asquith, May 2011

distribution seen in figure 6.5. The variable zout holds the value of the single-value con-
tamination, which is appended to the fake.dat vector.

6–23
fake.dat <- 10^rnorm(99, mean=2, sd=0.5)
zout <- 7000 # a static value to increase right-tail weight
fake.dat <- c(fake.dat,zout) # add value to the vector
ef <- pp(fake.dat) # Weibull plotting positions
T <- prob2T(pnorm(log10(zout), mean=2, sd=0.5))
print(T) # equivalent recurrence interval
[1] 8925.334

#pdf("consist1.pdf")
plot(qnorm(ef), log10(sort(fake.dat)), type="b",

xlab="STANDARD NORMAL DEVIATE")
#dev.off()
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Figure 6.5. Empirical distribution of simulated log-Normal data from example 6–23

It should be pointed out that the valueX = 7,000 (the high outlier and contamination)
corresponds to F = 0.999888, and if the data were annual maxima, this is nearly the
9,000-year event as shown in example 6–23 .
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To continue, the exploration of statistical consistency is made in example 6–24 for
a range of sample sizes in variable sams. In the example, the sample() function is
used to bootstrap8 samples of size n with replacement from the data set. The number
of occurrences of zout in the bootstrapped sample are set in variable numzout. Values
in numzout are used to dynamically change the plotted symbol type and size. The exam-
ple ends with the computation of the L-moments, product moments, and the product
moments of the base-10 logarithms of each bootstrapped sample. The values for skew-
ness are finally retained in the vectors lskew, skew, and logskew.

6–24
sams <- seq(10,200)
lskew <- vector(mode = "numeric")
skew <- logskew <- sym <- siz <- lskew
for(n in sams) {

i <- n - 9
sim <- sample(fake.dat,n, replace=TRUE) # bootstrap
sym[i] <- 1; siz[i] <- 1 # reset symbol type and size
numzout <- length(sim[sim == zout]) # count of outliers
if(numzout > 0) sym[i] <- 16; siz[i] <- numzout
lmr <- lmoms(sim) # compute L-moments
pmr <- pmoms(sim) # compute product moments
logpmr <- pmoms(log10(sim)) # compute pmoms of log10s

lskew[i] <- lmr$ratios[3] # save L-skew
skew[i] <- pmr$ratios[3] # save Skew (product moment)

logskew[i] <- logpmr$ratios[3] # save Skew of log10s
}

The values for skewness (τ̂3 and Ĝ) for each sample size computed in example 6–24

are plotted by example 6–25 and shown in figures 6.6–6.8. In the figures, an effective use
of combined symbol size, coloring, and transparency is seen that depicts the effect of the
presence of the zout values on the random samples.

6–25
#pdf("consist2.pdf", version="1.4")
plot(sams, lskew, xlab="SAMPLE SIZE", ylab="L-SKEW",

pch=sym, cex=siz,

8 Ugarte and others (2008, p. 469) report that “bootstrap” is an allusion to a German legend about
a Baron Münchhausen, who was able to lift himself out of a swamp by pulling himself up by his
own hair. The author had previously understood this legend to be the source of bootstrap, but
does not recall the other source(s). In the 1988 movie The Adventures of Baron Munchausen (note
spelling difference) or Abenteuer des Baron von Münchhausen, Die (Germany), the Baron character
played by John Neville pulls himself out of the sea and not a swamp.
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col=rgb(0,0,0,0.5))
#dev.off()
#pdf("consist3.pdf", version="1.4")
plot(sams, skew, xlab="SAMPLE SIZE", ylab="SKEW",

pch=sym, cex=siz,
col=rgb(0,0,0,0.5))

#dev.off()
#pdf("consist4.pdf", version="1.4")
plot(sams, logskew, xlab="SAMPLE SIZE",

ylab="SKEW OF LOGARITHMS",
pch=sym, cex=siz,
col=rgb(0,0,0,0.5))

#dev.off()

In figures 6.6–6.8, the open circles represent samples in which zout high outlier was
not drawn (“drawn” as picked by sample() function) and conversely, the grey circles
represent samples in which one or more values of zout were drawn. The size of the
grey circles are successively increased according to the number of zout values that were
generated by the simulation.
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Figure 6.6. Relation between τ̂3 and sample size of simulated log-Normal distribution shown in
figure 6.5 from example 6–24
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Figures 6.6–6.8 show that the probability of one or more drawings of zout increases
with increasing sample size. This conclusion is made because there is increasing density
and often size of grey circles as n → 200. It also is seen in the figures, in particular
figure 6.6, that two general states of sample skewness estimation exist. In general, but not
exclusively, the sample values of τ̂3 and Ĝ become more positive as sample size increases.
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Figure 6.7. Relation between Ĝ and sample size of simulated log-Normal distribution shown in
figure 6.5 from example 6–24

Considering first figure 6.6 and the open circles, these symbols form a “mirrored
parabola” shape with the tapered or diminishing end toward the right. This shape shows
the reduction in sampling variance as n increases and the tapered end is trending towards
τ3 ≈ 0.52, which is about lmoms(10^rnorm(100000,mean=2,sd=0.5)). Consider-
ing the grey circles, a similar pattern also is seen when zout values are included in the
samples, but the τ̂3 values are about 1.4 times larger—the effect of zout is thus to increase
distribution skewness (not skewness as measured byG) to the right as expected. To clarify,
the sample values of τ̂3 increase as the number of zout values in the sample increases.
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Figure 6.8. Relation between Ĝ of logarithms and sample size of simulated log-Normal distribu-
tion shown in figure 6.5 from example 6–24

Drawing attention from τ̂3 to Ĝ in figure 6.7, it is again seen that the open circles form a
mirrored parabola with the tapering-end toward the right. Because the open circles taper
to the right, consistency for the estimator Ĝ is suggested. An evaluation of this observation
is made in example 6–26 .

6–26
n <- 100000 # sample size
x <- replicate(20, mean(pmoms(10^rnorm(n,mean=2,sd=0.5))$skew))
summary(x) # summary of 20 replicates

Min. 1st Qu. Median Mean 3rd Qu. Max.
6.586 7.483 8.399 8.342 9.147 10.350

As seen in the example, the summary() function shows statistical values that strongly
suggest that Ĝ is an inconsistent estimator for a heavy-tailed distribution even without
contamination. The statistics in example 6–26 have grown without bounds—this is the
inconsistency.

Consider now the contamination by zout, the grey circles in figure 6.7 plot apparently
further from the open circles than seen in figure 6.6, but much more alarming is that the
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trend of the Ĝ values is to expand in variance as n increases. Hence, the inconsistency of
Ĝ is further demonstrated. Values for Ĝ actually decrease as the number of zout values
increases. The sample distribution appears less right-tail heavy as more zout are encoun-
tered, which is a contradiction to, that is, inconsistent with, the anticipated result of the
contamination.

Finally, the use of the Ĝ of the logarithms is considered in figure 6.8. The Ĝ values now
show a tapering-to-right mirrored parabola shape as seen for τ̂3 in figure 6.6. A consistent
estimator of the skew of the logarithms thus is suggested. In fact, notice that the open cir-
cles trend towardsG = 0, which is the product moment skew of the Normal distribution,
and the Normal is of course the distribution of the log10 of the sample values drawn from
a log-Normal distribution. It can be concluded that if a distribution is Normal or not too
far from Normal, the estimator Ĝ is consistent.

This discussion illustrates why product moments of logarithms are frequently used in
disciplines with substantially skewed data. The logarithms of the data frequently reduce
data skewness. However, the author argues that the analyst ends up then analyzing the
logarithms of the data and not the data in their native unit system—not always a philo-
sophically attractive situation. The use of the L-moments generally avoids the need for
logarithmic transformation (or any other) and avoids resultant concerns of transformation
and re-transformation bias. J

6.6 Multivariate L-moments

This dissertation is focused on univariate distributional analysis using L-moments.
L-moments, however, are extendable into multivariate space, and this exciting extension
of L-moment theory is described in the final section of this dissertation (Section 12.9 on
page 386).
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6.7 Summary

In this chapter, historical background of L-moments is presented, and both the theoreti-
cal and sample L-moments were described. Principally, these are the L-moments of mean,
L-scale, L-skew, and L-kurtosis. The boundedness of the L-moments is presented and com-
pared to the unfavorable sample size boundedness of the sample product moments. The
interrelations between L-moments and probability-weighted moments are shown along
with visualization of the relative contribution (weight factors) of specific order statistics
to the computation of the first five L-moments. The chapter continues with a theoretical
and sample description of the TL-moments (the L-moments of trimmed samples). The
sampling properties of L-moments are considered and closing discussion of logarithmic
transformation, which began in Chapter 4, is completed. Finally, the 26 examples in the
chapter demonstrated computations of these statistics using numerous L-moment-related
functions such as lmoms(), TLmoms(), lmom2pwm(), and samlmu().
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Chapter 7

L-moments of Univariate Distributions

In this chapter, I present an introductory discussion of distribution support by

L-moments in several R packages, but focus clearly is on the lmomco package. The intro-

ductory discussion applies to the following two chapters as well and applies to many

examples already seen and others in the remainder of this dissertation. The chapter

also, and more importantly, provides a distribution-by-distribution discussion of math-

ematics, features, parameters, and L-moments of two-parameter distributions. Readers

possessing considerable familiarity with statistics and R are likely to generally browse

as needed through the distributions. Other readers are encouraged to at least review

this chapter with the mindset that periodic return likely will be made. This chapter is

central to distributional analysis with L-moment statistics using R.

7.1 Introduction

Probability distributions are obvious and important concepts for distributional analysis.
Distributions are chosen and parameters fit to data for various reasons and purposes.
Numerous continuous distributions in the context of L-moment theory are available to
the analyst, and many are considered in this dissertation. Some distributions such as
the Normal or Gamma are well known across disciplines; whereas, others such as the
Kumaraswamy or Kappa are not. This chapter, in conjunction with Chapters 8 and 9,
represents a major reference component of this dissertation: L-moments and parameters
of univariate distributions and using R to perform analysis with these distributions.

The preceding chapters provide background, definitions, general mathematics, and
methods for computation of L-moments, probability-weighted moments, and related
statistics. As required by the nature of the prior discussion and examples, L-moments
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occasionally are used to compute distribution parameters from sample data, and parame-
ters often are used to specify parent distributions in support of simulation experiments or
graphical presentation. Many of the preceding examples also used simulation to study the
sampling properties of L-moments and, by association, probability-weighted moments.
Furthermore, comparisons of the sampling properties of L-moments to those of product
moments also are made. Those earlier examples have used several of the distributions that
are described in detail in either this chapter or Chapters 8 and 9.

It can be concluded from the preceding discussion that many aspects of this chap-
ter, thus, have been foreshadowed in narrative and example. However, this chapter and
Chapters 8 and 9 systematically treat with mathematical exposition the 22 distributions1

supported by the lmomco package and in many cases by the lmom package as well.

The author acknowledges the semantic similarity between the distribution functions of
the lmom and the lmomco packages. When both packages (lmomco and lmom) are loaded,
a listing of the object(s) masked by one library over the other is provided to the user.
For example, among about two dozen other naming conflicts,2 both packages import a
cdfgev() function. This function in both packages provides the CDF of the Generalized
Extreme Value distribution.

Like all other chapters of this dissertation, Chapters 7–9 are heavily oriented towards
the lmomco package. However, because of some functional similarity with lmomco and the
enormous respect the author has for J.R.M.Hosking, the author has explicitly chosen to
first list Jonathan’s contributions of functions in the lmom package in tables 7.1 and 7.2 for
the distribution functions and L-moment and parameter functions, respectively.

7.1.1 Chapter Organization

Although this chapter is focused on one- and two-parameter distributions, a synopsis of
distributions and the presentation structure (layout) in this chapter and the following two
chapters is appropriate.
1 The log-Normal3 distribution is a special case of the Generalized Normal so the distribution is
not separately counted although separate functions are provided by the lmomco package.
2 The conflicts or “object masks” as of 2011 are: cdfexp, cdfgam, cdfgev, cdfglo, cdfgno,
cdfgpa, cdfgum, cdfkap, cdfln3, cdfnor, cdfpe3, cdfwak, cdfwei, quaexp,
quagam, quagev, quaglo, quagno, quagpa, quagum, quakap, qualn3, quanor,
quape3, quawak, and quawei.
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Table 7.1. Summary of distribution functions provided by the lmom package by Hosking (2009a)

Distribution PDF CDF QDF
Exponential -- cdfexp() quaexp()

Gamma -- cdfgam() quagam()

Generalized Extreme Value -- cdfgev() quagev()

Generalized Logistic -- cdfglo() quaglo()

Generalized Normal -- cdfgno() quagno()

Generalized Pareto -- cdfgpa() quagpa()

Gumbel -- cdfgum() quagum()

Kappa -- cdfkap() quakap()

log-Normal3 -- cdfln3() qualn3()

Normal -- cdfnor() quanor()

Pearson Type III -- cdfpe3() quape3()

Wakeby -- cdfwak() quawak()

Weibull -- cdfwei() quawei()

Table 7.2. Summary of L-moment and parameter functions by distribution provided by the lmom
package by Hosking (2009a)

Distribution L-moments Parameters
Exponential lmrexp() pelexp()

Gamma lmrgam() pelgam()

Generalized Extreme Value lmrgev() pelgev()

Generalized Logistic lmrglo() pelglo()

Generalized Normal lmrgno() pelgno()

Generalized Pareto lmrgpa() pelgpa()

Gumbel lmrgum() pelgum()

Kappa lmrkap() pelkap()

log-Normal3 lmrln3() pelln3()

Normal lmrnor() pelnor()

Pearson Type III lmrpe3() pelpe3()

Wakeby lmrwak() pelwak()

Weibull lmrwei() pelwei()
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• Section 7.1.2 provides, without regard to the number of parameters, an overview of
the distributions supported and ancillary functions provided by the lmomco package.
Tabulated suites of conceptually similar functions also are provided. The tables are
intended to provide a semantic perspective of, and reference for, the nomenclature of
the lmomco package.

• Section 7.2 provides details of one- or two-parameter distributions. Three-parameter
and four- and more parameter distributions are similarly detailed in Chapters 8 and 9,
respectively.

Internally, Chapters 7–9 are similarly organized. The introductory commentary for each
distribution provides some measure of context or common application of the respective
distribution. For each distribution, the DISTRIBUTION FUNCTIONS headings are math-
ematically oriented and provide the PDF, CDF, and QDF of the distribution if respective
analytical expressions exist. The names and constraints of the parameters are identified,
and the ranges or limits of the distribution are shown. The narrative also presents the
relations between the L-moments and the parameters for the respective distribution.

The Using R identifiers, which follow the mathematics of each distribution, generally
provide discussion and examples of the salient functions supporting the distribution and
provide comparisons to built-in R functions as appropriate. The examples also vary by the
types of distribution-specific functions that are demonstrated. To mitigate against intra-
chapter redundancy and promote broad-scoped discussion of package-specific features
across Chapters 7–9, the examples also vary considerably by scope and complexity. Finally,
the Using R are written in a style intended to be suitable for readers to browse from
distribution to distribution. As opportunity allowed or otherwise seemed appropriate,
additional mathematical details are provided in the individual Using R narratives.

The selection of one ormore distributions and evaluation of their general applicability is
an important subject. Although the examples in this chapter and those in Chapters 8 and 9
providemany comparisons between distributions, neither this chapter or Chapters 8 and 9
specifically address the topic of distribution discrimination and selection. Distribution
discrimination and selection is described in Chapter 10.

Final notes about the source of material, in particular, the mathematics of the two-
parameter distributions, are needed. Unless otherwise stated the material is heavily
based on the distribution-by-distribution summaries of Evans and others (2000), Hosking
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(1996b), Hosking andWallis (1997), and Stedinger and others (1993). These and additional
citations are provided as needed on a distribution-specific basis.

7.1.2 Distributions of the lmomco Package

The lmomco package provides a myriad of functions for general distribution operations as
well as distribution-specific functions of the properties of supported distributions. Many
of these functions and respective features are demonstrated in this chapter and also in
Chapters 8 and 9. As a beginning, several important functions and general conceptual
design of function naming convention for the lmomco package need formal identification
and discussion.

Distribution Functions of lmomco

For several distributions, such as the Normal, Exponential, Gamma, and others, R has
built-in support, and the distribution functions are descriptively named (see Sections 2.1.1–
2.1.4). The lmomco package, however, provides an alternative naming convention and
parameter argument implementation.

For example of the lmomco naming convention, the PDF of theNormal distribution is the
dnorm() function of R, which is implemented in lmomco as pdfnor() or in shorthand:
dnorm()→ pdfnor(). The CDF and QDF are pnorm()→ cdfnor() and qnorm()→
quanor(), respectively. Following this style, the PDFs are provided by functions titled
pdfXXX(), where XXX is replaced by an abbreviation for the distribution. The CDFs of
lmomco are provided by functions titled cdfXXX(), and the QDFs of lmomco are provided
by functions titled quaXXX(). Distribution functions of lmomco for the PDF, CDF, and
QDFs are listed in table 7.3.

The “distribution functions” listed in table 7.3 show that the lmomco package breaks
considerably from R tradition in the naming of functions related to distributions. The
nomenclature of R is fine, but the nomenclature can be restrictive if one has a requirement
or need for shifting between (or experimenting with) different distributions as part of
distributional analysis. The R nomenclature lacks some parallelism. However, mimicking
the R tradition, lmomco has the following functions, which provide an alternative means
of calling distributions by the dlmomco(), plmomco(), qlmomco(), and rlmomco()

functions. This dialect simultaneously makes lmomco distribution support “more familiar”
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to users already accustomed to R and provides a singularly unique and package-specific
interface.

The lmomco package provides a specific style of parameter argument implementation.
The foremost difference in style from that of the R language is that lmomco provides func-
tions that rely on the lmomco parameter list and the $type attribute of that list for proper
routing. For example, 7–1 and the associated discussion that preceeds formally present
the “lmomco parameter list.” This list is used by many functions of lmomco that need
parameters. For the example, a Generalized Normal distribution parameter list GNOpar
is constructed in which the three parameters are ξ = −228, α = 330, and κ = 0.413 (see
Section 8.2.3). These parameters are stored in the $para attribute of the list. The $type
attribute has been tagged as "gno" (Generalized Normal). The $source attribute simply
lists the name of the function that generated the list. This attribute is not used for internal
operations of lmomco, but it is provided for user reference and unforeseen application
needs.

Further discussion about the parameter vector in GNO$para is needed. The vector
$para stores the parameters in “moment order,” which also is the order shown in the
first sentence under the DISTRIBUTION FUNCTIONS headings of this and Chapters 8
and 9. For the example distribution, the moment-order listing for the Generalized Normal
distribution in the previous paragraph is GNO(−228, 330, 0.413).

7–1
GNOpar <- vec2par(c(-228, 330, 0.413), type="gno")
str(GNOpar)
List of 3
$ type : chr "gno"
$ para : num [1:3] -228 330 0.413
$ source: chr "vec2par"

J

Concluding commentary is needed. The R environment is built around the design ideal
that distribution functions receive some—that is, not necessarily all—parameters through
named arguments to the function. Whereas, lmomco has more compartmentalized design
ideals in which a data structure represents the single parameter argument to the distribu-
tion functions. Example 7–2 provides a comparison of implementation styles for reporting
the upper quartile X0.75 of the Normal distribution. Four different approaches are used
in the example, and the output is shown on the last line of the example:X0.75 = 1,067.
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7–2
up.qrt.R <- qnorm(0.75, mean=1000, sd=100) # built-in R
NORpar <- vec2par(c(1000,100), type="nor") # lmomco
up.qrt.lmomco1 <- quanor(0.75,NORpar) # lmomco
up.qrt.lmomco2 <- par2qua(0.75,NORpar) # lmomco
up.qrt.lmomco3 <- qlmomco(0.75,NORpar) # lmomco
my75 <- c(up.qrt.R,

up.qrt.lmomco1, up.qrt.lmomco2, up.qrt.lmomco3)
my75 <- sapply(my75,round)
cat(c(my75,"\n")) # results
1067 1067 1067 1067

For its distribution functions, the lmom package consistently uses a simple vector of
parameter values. This style is an intermediate between the lmomco parameter list and the
general, but not universal, named argument style of R. In the example, the differences in
argument passage are contrasted for the Normal distribution. J

Conversion of Vectors to L-moments and Parameters using Functions of lmomco

Two commonly used convenience functions in the examples in this chapter and already
seen elsewhere in this dissertation are vec2lmom() and vec2par(). These two func-
tions and three others, which are conceptually related, are summarized in this section. The
vec2lmom() function converts a vector of L-moments into an lmomco L-moment list (see
page 127 and exs. 6–7 – 6–9 ). The list is used by many functions within the lmomco pack-
age that need L-moments. The list can be reverted to a vector by the lmom2vec() function.
The vec2par() function converts a vector of parameters into an lmomco parameter list,
which is shown and described in example 7–1 in the previous section. The opposite
conversion is supported by the par2vec() function. The vec2pwm() function converts
a vector of parameters into an lmomco probability-weighted moment list (see page 108
and examples 5–8 and 5–9 ). The list is used by many functions of lmomco that need
probability-weighted moments. The list can be reverted to a vector by the pwm2vec()
function. The five functions listed in this paragraph also are considered with other “high-
level conversion” functions on page 169 and also listed in table 7.6.

Distribution Parameter Functions of lmomco

The parameters of a distribution are computed by the method of L-moments using
functions that are titled by the following pattern parXXX(), where XXX is replaced by
an abbreviation for the distribution. The function dist.list() provides a list of these
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Table 7.3. Summary of distribution functions provided by the lmomco package by Asquith (2011)

Distribution PDF CDF QDF
Cauchy pdfcau() cdfcau() quacau()

Exponential pdfexp() cdfexp() quaexp()

Gamma pdfgam() cdfgam() quagam()

Generalized Extreme Value pdfgev() cdfgev() quagev()

Generalized Lambda pdfgld() cdfgld() quagld()

Generalized Logistic pdfglo() cdfglo() quaglo()

Generalized Normal pdfgno() cdfgno() quagno()

Generalized Pareto pdfgpa() cdfgpa() quagpa()

Gumbel pdfgum() cdfgum() quagum()

Kappa pdfkap() cdfkap() quakap()

Kumaraswamy pdfkur() cdfkur() quakur()

log-Normal3 pdfln3() cdfln3() qualn3()

Normal pdfnor() cdfnor() quanor()

Pearson Type III pdfpe3() cdfpe3() quape3()

Rayleigh pdfray() cdfray() quaray()

Reverse Gumbel pdfrevgum() cdfrevgum() quarevgum()

Rice pdfrice() cdfrice() quarice()

Wakeby pdfwak() cdfwak() quawak()

Weibull pdfwei() cdfwei() quawei()

Right-Censored Generalized Pareto pdfgpa() cdfgpa() quagpa()

Trimmed Generalized Lambda pdfgld() cdfgld() quagld()

Trimmed Generalized Pareto pdfgpa() cdfgpa() quagpa()

abbreviations, but the pattern should be evident from the tables in this section. For exam-
ple, the parameters for the Normal distribution are computed by the parnor() function.
Functions for the parameters in terms of L-moments for the distributions in table 7.3 are
listed in table 7.4.

Distribution L-moment Functions of lmomco

The L-moments of a distribution are computed from the parameters using functions
titled according to the following pattern lmomXXX(), where XXX is replaced by an abbrevi-
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ation for the distribution. For example, the L-moments of theNormal distribution are com-
puted by the lmomnor() function. Functions for the L-moments in terms of the parame-
ters by distribution for the same distributions in table 7.3 are listed in table 7.4.

The theoLmoms() function computes the L-moments of distributions supported by
lmomco. The function uses numerical integration and therefore bypasses analytical or
quasi-analytical solutions shown in this chapter and Chapters 8 and 9. The algorithms
in the theoLmoms() function are distinct from those in the lmomXXX() functions; the
lmomXXX() functions, when possible, are based on analytical expressions or solutions
with numerical approximations.

The author created the theoLmoms() function initially to have a development tool to
test or otherwise validate the lmomXXX() functions. However, the function also can be
used to compute L-moments of alternative distributions specified by parameters and R

code not specifically provided by lmomco. For trimmed distributions, the theoTLmoms()
function provides a similar role as theoLmoms() does for the non-trimmed distributions.

For example, the L-moments of the standard Normal distribution are computed in
example 7–3 . The results show that the mean µ = λ1 = 0 and λ2 = 1/

√
π ≈ 0.564

by definition for the standard Normal distribution and that τ3 = 0 and τ4 ≈ 0.123

(see Section 7.2.1).

7–3
NORlmoms <- theoLmoms(vec2par(c(0,1), type="nor"))
str(NORlmoms)
List of 4
$ lambdas: num [1:5] -4.36e-17 5.64e-01 -7.40e-17 6.92e-02

-1.33e-16
$ ratios : num [1:5] NA -1.29e+16 -1.31e-16 1.23e-01

-2.36e-16
$ trim : num 0
$ source : chr "theoLmoms"

Distribution-Specific Convenience Functions of lmomco

The lmomco package provides numerous “distribution-specific convenience functions.”
The functions are listed in table 7.5. The convenience functions primarily are used as inter-
nal checks on the type (is.XXX()) of the lmomco parameter list for a given distribution
andwhether the parameters within the parameter list are valid (are.parXXX.valid()).
These functions are provided at the user level so that developers could build higher-level
interfaces in which such operations might be useful. The are.par.valid() function
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Table 7.4. Summary of L-moment and parameter functions by distribution provided by the lmomco
package by Asquith (2011)

Distribution L-moments Parameters
Cauchy lmomcau() parcau()

Exponential lmomexp() parexp()

Gamma lmomgam() pargam()

Generalized Extreme Value lmomgev() pargev()

Generalized Lambda lmomgld() pargld()

Generalized Logistic lmomglo() parglo()

Generalized Normal lmomgno() pargno()

Generalized Pareto lmomgpa() pargpa()

Gumbel lmomgum() pargum()

Kappa lmomkap() parkap()

Kumaraswamy lmomkur() parkur()

log-Normal3 lmomln3() parln3()

Normal lmomnor() parnor()

Pearson Type III lmompe3() parpe3()

Rayleigh lmomray() parray()

Reverse Gumbel lmomrevgum() parrevgum()

Rice lmomrice() parrice()

Wakeby lmomwak() parwak()

Weibull lmomwei() parwei()

Right-Censored Generalized Pareto lmomgpaRC() pargpaRC()

Trimmed Generalized Lambda lmomTLgld() parTLgld()

Trimmed Generalized Pareto lmomTLgpa() parTLgpa()

provides a single and alternative interface, if not more convenient for the user, to the
are.parXXX.valid() functions.

The following two examples in 7–4 and 7–5 demonstrate the use of the “parameter
validation function” are.parXXX.valid(), and the use of the “distribution type func-
tion” is.XXX(). Example 7–4 sets the parameters of a Gumbel distribution fit to the
L-moments of a fake data set into the para variable. Subsequently, the quantile Q for
the median (F = 0.5) of the distribution is computed by the quagum() if the param-
eters in para are valid Gumbel parameters. An attempt to compute the median of the
Exponential distribution follows; however, the attempt fails because the type of the para
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Table 7.5. Summary of convenience functions by distribution provided by the lmomco package by
Asquith (2011)

Distribution Parameter validation Distribution type
-- are.par.valid() --

Cauchy are.parcau.valid() is.cau()

Exponential are.parexp.valid() is.exp()

Gamma are.pargam.valid() is.gam()

Generalized Extreme Value are.pargev.valid() is.gev()

Generalized Lambda are.pargld.valid() is.gld()

Generalized Logistic are.parglo.valid() is.glo()

Generalized Normal are.pargno.valid() is.gno()

Generalized Pareto are.pargpa.valid() is.gpa()

Gumbel are.pargum.valid() is.gum()

Kappa are.parkap.valid() is.kap()

Kumaraswamy are.parkur.valid() is.kur()

log-Normal3 are.parln3.valid() is.ln3()

Normal are.parnor.valid() is.nor()

Pearson Type III are.parpe3.valid() is.pe3()

Rayleigh are.parray.valid() is.ray()

Reverse Gumbel are.parrevgum.valid() is.revgum()

Rice are.parrice.valid() is.rice()

Wakeby are.parwak.valid() is.wak()

Weibull are.parwei.valid() is.wei()

Right-Censored Generalized Pareto are.pargpa.valid() is.gpa()

Trimmed Generalized Lambda are.parTLgld.valid() is.TLgld()

Trimmed Generalized Pareto are.parTLgpa.valid() is.TLgpa()

list is not "gum". The parameter validation functions internally call the distribution type
tests by is.XXX() and check whether values of the parameters meet distribution-specific
constraints.
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7–4
para <- pargum( lmom.ub( c(123,34,4,654,37,78) ) )
if(are.pargum.valid(para)) Qgum <- quagum(0.5, para)
if(are.parexp.valid(para)) Qexp <- quaexp(0.5, para)

# error message triggered because para is "gum"bel
Warning message:
In is.exp(para) : Parameters are not exponential parameters

J

The followup to example 7–4 is 7–5 that shows use of the is.glo() function for a
Generalized Logistic distribution that is fit to the sample L-moments by the parglo()
function. The example does not verify whether the parameters are consistent with the
indicated distribution—they would be in the example because the parglo() function
returns valid parameters for the distribution for the sample data provided.

7–5
para <- parglo( lmom.ub( c(123,34,4,654,37,78) ) )
if(is.glo(para) == TRUE) {

Q <- quaglo(0.5,para) # compute the median
print(Q) # print the value, which is shown below

}
[1] 82.21451

J

High-Level Conversion Functions of lmomco

The lmomco package provides several “high-level conversion” functions. These func-
tions are listed in table 7.6. The functions require the L-moment and parameter lists and
dispatch these lists to the respective distribution-specific functions (see tables 7.3 and 7.4).
These functions collectively are a visible manifestation of the considerable differences in
implementation philosophies for distribution functions built-in to R to those within the
lmomco package.

Along with the high-level conversion functions listed in table 7.6, four even more gen-
eral or high-level distribution functions are available. The four are listed in table 7.7 and
have a naming convention thatmimics the built-in distributions ofR. Example 7–6 demon-
strates and juxtaposes use of the plmomco() function between alternative methods of the
lmomco package and those of R.
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Table 7.6. Summary of high-level conversion functions provided by the lmomco package by
Asquith (2011)

Function name Action
vec2lmom() Convert vector to L-moments
lmom2vec() Convert L-moments to a vector
vec2par() Convert vector to parameters
par2vec() Convert parameters to a vector
vec2pwm() Convert vector to probability-weighted moments
pwm2vec() Convert probability-weighted moments to a vector
par2lmom() Convert parameters to L-moments
lmom2par() Convert L-moments to parameters
par2pdf() Convert parameters to the PDF
par2cdf() Convert parameters to the CDF
par2qua() Convert parameters to the QDF
are.lmom.valid() Check theoretical bounds of L-moments
are.par.valid() Check parameters consistency for indicated distribution

7–6
the.shape <- 300; the.scale <- 500; my.x <- 150000
PARgam <- vec2par(c(the.shape,the.scale), type="gam")
plmomco(my.x,PARgam) # lmomco
[1] 0.5076778
cdfgam(my.x,PARgam) # lmomco
[1] 0.5076778
par2cdf(my.x,PARgam) # lmomco
[1] 0.5076778
pgamma(my.x, shape=the.shape, scale=the.scale) # built-in R
[1] 0.5076778

J

Example 7–7 demonstrates the utility of the lmomco parameter list. Using the given
L-moments set by the vec2lmom() function into lmr, the parameters for Generalized
Extreme Value, Gumbel, and Weibull distributions are computed, and 400 random val-
ues produced from each distribution. The empirical distribution of each distribution is
developed by the plotting positions (pp() function) and the sort()ing of the values.
The example completes by plotting the distributions. The three empirical distributions
(Generalized Extreme Value, thin line; Gumbel, dashed line; and Weibull, thick line) are
shown in figure 7.1.

170



Texas Tech University,William H. Asquith, May 2011

Table 7.7. Summary high-level distribution functions of lmomco package by Asquith (2011) that
mimic the nomenclature of R

Function name Action
dlmomco() Probability density functions (see Section 2.1.1)
plmomco() Cumulative probability functions (see Section 2.1.2)
hlmomco() Hazard functions (see Section 2.1.3)
qlmomco() Quantile distribution functions (see Section 2.1.4)
rlmomco() Random variates (random values)

7–7
lmr <- vec2lmom(c(100,200,-0.3,0.1)); n <- 400
PP <- pp(1:n) # pp values of 1 through n
GEV <- rlmomco(n,lmom2par(lmr, type="gev"))
GUM <- rlmomco(n,lmom2par(lmr, type="gum"))
WEI <- rlmomco(n,lmom2par(lmr, type="wei"))
#pdf("rlmomcoA.pdf")
plot(PP,sort(GEV), type="l",

xlab="NONEXCEEDANCE PROBABILITY",
ylim=c(-1000,1000), ylab="QUANTILE")

lines(PP,sort(GUM), lty=2) # dashed line
lines(PP,sort(WEI), lwd=3) # thick line
#dev.off()

The basic algorithm in example 7–7 is simple and syntactically parallel—only the argu-
ment type to the lmom2par() function requires adjustment to change to another distri-
bution. The dashed line of the Gumbel distribution is specified by the lty=2 (line type)
argument to lines(), and the thick line of the Weibull is specified by the lwd=3 (line
width) argument. J

7.2 One- and Two-Parameter Distributions of the lmomco Package

One- and two-parameter distributions are the simplest probability distributions in terms
of fitting and interpretation. Such distributions generally are fit only to the first or only to
the first (mean) and second moments (standard deviation or L-scale) of the data. In this
chapter, unless otherwise stated, such fitting is understood as implying that the distribu-
tions are fit by the method of L-moments and specifically fit to the sample L-moments λ̂1
(mean) and λ̂2 (L-scale).
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Figure 7.1. Example of three distributions, Generalized Extreme Value (thin line), Gumbel (dashed
line), and Weibull (thick line) fit to the identical L-moments from example 7–7

For most one- and two-parameter distributions, the first parameter is known as the
location parameter and the second parameter, if present, is known as the scale parameter.
Following the lead of J.R.M.Hosking in his written works (see the References section that
begins on page 402) and his FORTRAN library (Hosking, 1996b), lmomco implements the
scale parameter as a true scale—meaning that the scale parameter has the sameunits as the
location parameter. This philosophy is applied to scale parameters for distributions having
three or more parameters. The author agrees with this philosophy and explicitly does not
support in package-level code the inversion of scale parameters to “rate parameters” as R

does—the Gamma distribution as implemented by R is an example.3

Occasionally, a two-parameter distribution can be reformulated as a one parameter if
the location parameter simply provides a translation on the real-number line R—such a

3 The author historically has found the inconsistency of presentation of scale or rate parameters
in distributions amongst various literature or software sources confusing. A likely source of the
confusion is a background in a discipline (civil engineering and geosciences) that does not typically
involve survival analysis. For survival analysis, the rate of events or death seems to be the more
natural perspective/interpretation of distribution dispersion.
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distribution is the Exponential distribution, use help(rexp) for the rexp function for
details. Somedistributions, such as the two-parameterGammadistribution, lack a location
parameter, but have the addition of a shape parameter along with the scale parameter.
Distributions with three or more parameters as a rule have at least one shape parameter
and are covered in later chapters.

7.2.1 Normal Distribution

The Normal distribution is well known and an extremely important distribution through-
out all branches of statistics. The Normal distribution is a two-parameter distribution in
which the parameters are conveniently the first two productmoments: mean and standard
deviation.

DISTRIBUTION FUNCTIONS

The distribution functions of the Normal having parameters µ (mean, location) and σ
(standard deviation, scale, σ > 0) are

f(x) = ϕ(z) (a symbol by general convention, see below) (7.1)

F (x) = Φ(z) (no explicit form, but a symbol by general convention) (7.2)

x(F ) has no explicit analytical form

where z = (x − µ)/σ, ϕ(a) is the PDF, and Φ(a) is the CDF of the standard Normal
distribution, respectively. The QDF has no explicit analytical form, but a standard Normal
can be approximated by eq. (7.12). The value z will occasionally be termed “standard
normal deviate” forµ = 0 and σ = 1 formany examples here andwill be shown primarily
on the horizontal axis of plots. The PDF and CDF are

ϕ(x) =
exp(−x2/2)

σ
√

2π
(7.3)

Φ(x) =

∫ x

−∞
ϕ(x) dt (7.4)

The range of the distribution is−∞ < x <∞.
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The L-moments are

λ1 = µ (7.5)

λ2 = σπ−1/2 (7.6)

τ3 = 0 (symmetrical) (7.7)

τ4 = 30π−1arctan(
√

2)− 9 = 0.1226 (7.8)

The parameters are

µ = λ1 (7.9)

σ = λ2
√
π (7.10)

Finally, the CDF and QDF of the standard Normal distribution can be respectively approx-
imated (Stedinger and others, 1993, chap. 18, p. 11) by

F (z) = 1− 0.5 exp

[
−(83z + 351)z + 562

703/z + 165

]
for 0 < z ≤ 5 (7.11)

and
z(F ) = 5.063[F 0.135 − (1− F )0.135] (7.12)

Readers are encouraged to compare eq. (7.12) to the QDF of the Generalized Lambda
distribution in eq. (9.13) and see that eq. (7.12) is in the form of a Generalized Lambda.

A Normal distribution having µ = 0 and σ = 1 is known as the standard Normal
distribution. Finally, the log-Normal distribution is a Normal fit to the logarithms of a
random variable.

Using R Using R

An investigation of the bias of σ̂ compared to the bias of the product (λ̂2
√
π) as distinct

estimators of σ when the parent is Normal follows. In example 7–8 , a NOR(µ = 10000,
σ = 6000) is specified. The vectors e1 and e2will record the individual biases (errors) of
each simulated value—the difference between the estimate and true valueσ. As commonly
done in this dissertation, thernorm() function is used to generate simulated data. The σ̂ is
computed through eq. (4.19) and saved bysimsig <-sd(sim.dat), and λ̂2 is computed
by the lmoms() function. The example ends with a report of the results.
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7–8
mu <- 10000; sig <- 6000; n <- 20; nsim <- 10000
e1 <- vector(mode = "numeric"); e2 <- e1
for(i in seq(1,nsim)) {

fake.dat <- rnorm(n, mean=mu, sd=sig)
sim.sig <- sd(fake.dat) # usual standard deviation
lmr <- lmoms(fake.dat); siml2 <- lmr$lambdas[2]
e1[i] <- sig - sim.sig; e2[i] <- sig - sqrt(pi)*siml2

}

cat(c("BIAS SD=", round(mean(e1),2),
" BIAS SD.via.L2=", round(mean(e2),2), "\n"))

BIAS SD= 57.09 BIAS SD.via.L2= -23.36

This particular example shows that λ̂2 has less bias (|−23.36| < |57.09|) than the famil-
iar σ̂ for a NOR(10000, 6000) with a small sample size of 20. The numerical results will
vary and the sign on the estimated L-moment bias might change from time to time, but
the conclusion will generally remain the same for this sample size (n = 20). The use of
L-moments as potential drop-in-replacements for the product moments is partly demon-
strated. Simply stated, the biases reported in example 7–8 show that “on average” for
samples of n = 20 the estimation of σ using λ̂2

√
π is less biased than σ̂ when the parent

is Normal.

Should L-moments, therefore, be used to estimate σ? Using R, simulation can be readily
conducted for other sample sizes and by small modification to other distributions, the
reader can judge for themselves. If the parent distribution is Normal, it seems L-moments
might be preferred relative to the product moments to estimate the parameter σ for a
sample of n = 20. However, λ2

√
π will not always be a preferable estimator of σ for other

distributions such as for the Gamma distribution. J

7.2.2 Exponential Distribution

The Exponential distribution is a relatively simple distribution and is useful in applica-
tions involving constant failure rates. Many natural phenomena have, or approximately
have, constant arrival (occurrence, failure) rates. The Exponential distribution, therefore,
is frequently a first choice for distributional analysis for the aforementioned phenomena.
As a result, the Exponential distribution works well for modeling the inter-arrival times.
Phenomena involving the Exponential distribution can include arrival of precipitation
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(storms), cosmic rays, customers, and wear out of parts. The Exponential as implemented
by lmomco is a two-parameter version, whereas, the built-in version toR has one parameter.

DISTRIBUTION FUNCTIONS

The distribution functions of the Exponential having parameters ξ (location, lower
bounds) and α (scale, α > 0) are

f(x) = α−1 exp(−Y ) (7.13)

F (x) = 1− exp(−Y ) (7.14)

x(F ) = ξ − α log(1− F ) (7.15)

where
Y = (x− ξ)/α (7.16)

The range of the distribution is ξ ≤ x <∞.
The L-moments are

λ1 = ξ + α (7.17)

λ2 = α/2 (7.18)

τ3 = 1/3 (7.19)

τ4 = 1/6 (7.20)

The α parameter for a known ξ is
α = λ1 − ξ (7.21)

and the parameters for an unknown ξ are

α = 2λ2 (7.22)

ξ = λ1 − α (7.23)

An extended form of the Exponential distribution exists, which is known as the
stretched Exponential distribution or Kohlrausch function, has a PDF defined by

f(x) = α−1 exp(−[(x− ξ)/α]δ) (7.24)
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where δ is a shape parameter. This distribution is also the survival function of theWeibull
distribution and hence separate implementation in R is not needed.

Using R Using R

The single example 7–8 for the Normal distribution was comparatively complex. The
code in that example is substantially simplified for the Exponential distribution to demon-
strate the parXXX(), lmomXXX(), quaXXX(), and cdfXXX() functions using the Expo-
nential distribution. (A demonstration of the pdfXXX() functions is shown for the Cauchy
distribution in example 7–17 on page 184.)

The Exponential distribution is fit to some data in example 7–9 by the parexp()
function. The returned lmomco parameter list (see page 163 and ex. 7–1 ) is labeled as
PARexp. This list obviously is displayed by the print() function, and the output is
shown in the example.

7–9
fake.dat <- c(1542, 1291, 578, 860, 968, 405, 326, 493, 829, 423)
lmr <- lmoms(fake.dat); PARexp <- parexp(lmr)

print(PARexp) # print the lmomco parameter list
$type
[1] "exp"
$para

xi alpha
299.8778 471.6222
$source
[1] "parexp"

J

The L-moments of the fitted Exponential from example 7–9 , or more generally any
parameterized Exponential, are readily computed by thelmomexp() function as shown in
example 7–10 . The example also compares the fittedL-moments to the sample L-moments
of the data. The cat() function and respective ensembles of output provide for a com-
parison between the L-moments—the ensembles are the same only through the second
L-moment (λ1=771.5, λ2=235.8) and not for higher orders (τ3=0.249, τ exp3 =0.333).

7–10
LMRexp <- lmorph(lmomexp(PARexp))
cat(c(lmr$lambdas[1], lmr$lambdas[2],

lmr$ratios[3], lmr$ratios[4],"\n"))
771.5 235.811111111111 0.248928049757339 0.0525440728051105

177



Texas Tech University,William H. Asquith, May 2011

cat(c(LMRexp$lambdas[1], LMRexp$lambdas[2],
LMRexp$ratios[3], LMRexp$ratios[4],"\n"))

771.5 235.811111111111 0.333333333333333 0.166666666666667

For this particular example, a conversion (“morphing”) by the lmorph() function of
the L-moment list is needed in order to acquire the appropriate list structure to make
parallelism to the coding style (see documentation, help(lmorph), and examples 6–8

and 6–9 ). J

The lack of rounding of the results shown in example 7–10 is unsightly. The output in
example 7–11 is cleaner for the contents of thelmr variable originating fromexample 7–9 .
The sapply() and round() functions are used. The output is rounded to three digits
by digits=3. The example shows how features of R can be used in compact and nested
operations.

7–11
sapply(c(lmr$lambdas[1:2],

lmr$ratios[3:4]), round, digits=3)
[1] 771.500 235.811 0.249 0.053

J

The distribution functions of the Exponential are readily accessible. Assuming that the
parameters from examples 7–9 and 7–10 are available, the median of the distribution
(F=0.5) and the equivalent F value for 999 units of x are computed, respectively, by
example 7–12 . The x0.50 is about 599 and F (999) = 0.79.

7–12
PARexp <- parexp(lmoms(c(1291, 578, 860, 968, 405, 326)))

quaexp(0.5,PARexp) # quantile function of exponential
[1] 598.9752

cdfexp(999,PARexp) # cdf of exponential
[1] 0.7932147

J

The R environment has built-in functions for the Exponential distribution. For exam-
ple, the QDF of the distribution is qexp(). The R implementation of the Exponential
lacks the location parameter, which is provided by the lmomco package. A comparison of
75th-percentile computation is informative. Letting ξ = 0 and α = 200, the parameters
are set using the vec2par() function and proceed to compute quantiles from both the
quaexp() and qexp() functions in example 7–13 .
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7–13
alpha <- 200
F <- 0.75
PARexp <- vec2par(c(0,alpha), type="exp")
built.in <- qexp(F, rate=1/alpha)
from.lmomco <- quaexp(F,PARexp)

cat(c("# OUTPUT:",
"qexp=", built.in, " ",
"quaexp=", from.lmomco,"\n"))

# OUTPUT: qexp= 277.258872223978 quaexp= 277.258872223978

The two values are identical as anticipated. The quaexp() function provides more
parallel syntax to other distributions within the lmomco package. The lmomco package
provides more flexibility by implementing a two-parameter version of the Exponential
distribution instead of a one-parameter version as is standard with R. The personal pref-
erence of the analyst obviously influences the choice of function to use. J

7.2.3 Gamma Distribution

The Gamma distribution is a two-parameter distribution that has a flexible width (scale)
and shape. Because the distribution starts at the origin, theGammadistribution can be use-
ful for modeling of some phenomena that also are bounded below by zero. An interesting
use of the Gamma distribution in a quasi-probabilistic application is shown in Asquith
and Roussel (2007), in which the Gamma provides a structural form of a “unit hydro-
graph” representation of a streamflow hydrograph. Kliche and others (2008) provides a
comparison of Gamma fitting to raindrop size using product moments, L-moments, and
maximum likelihood and conclude that “[L-moments] outperform [product moments]
and [maximum likelihood] for all [complete samples] studied” (Kliche and others, 2008,
p. 3128).

DISTRIBUTION FUNCTIONS

The distribution functions of the Gamma having parameters α (shape, α > 0) and
β (scale, β > 0) are
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f(x) =
(x/β)α−1 exp(−x/β)

βα Γ(α)
(7.25)

F (x) =
1

βα Γ(α)

∫ x

0

tα−1 exp(−t/β) dF (7.26)

x(F ) has no explicit analytical form

where Γ(α) is the complete gamma function that is shown in eq. (8.85).
The range of the distribution is 0 ≤ x <∞.
The first two L-moments are

λ1 = αβ (7.27)

λ2 =
β√
π

exp(log[Γ(α + 0.5)]− log[Γ(α)]) (7.28)

and the higher order L-moments are complex. Hosking (1996b) provides an algorithm
using rational-function approximations for τ3 and τ4. The parameters in terms of the
L-moments are complex. Hosking (1996b) provides minimax approximations for param-
eter estimation from the L-moments.

Themode statistic is the most frequently occurring value, and in continuous variables,
the mode is the peak of the PDF. The mode of the distribution is Modegam = β(α− 1) for
α ≥ 1. If α < 1, then the PDF of the Gamma acquires a decaying shape towards the right
in a similar fashion as the Exponential distribution. The mode can be used for parameter
estimation if the mode of the distribution is known or otherwise needs to be locked-in at a
given position. This application of themode is of interest in use of the Gamma distribution
for streamflow hydrograph modeling in which the peak streamflow corresponds to the
mode of the distribution (Asquith and Roussel, 2007, appendix 4).

Unlike those for the L-moments, the relations between the product moments and the
parameters are more straightforward and are

α = µ/β (7.29)

β = σ2/µ (7.30)

Using R Using R

The Gamma distribution is demonstrated using some L-moments derived from a pre-
vious study. The L-moments listed in table 7.8 are derived from Asquith and others (2006)
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and represent the first three L-moments of stormdepth (depth of rainfall). Rainfall depth is
a strictly positive phenomena and as a result positive skewness generally is present. These
L-moments are based on real values—that is, not log10-transformed values—therefore
application of a log-Normal distribution is not immediately feasible. However, theGamma
distribution has a zero lower bounds.

Table 7.8. L-moments of storm depth for storms defined by a minimum interevent time of 72 hours
in Texas derived from Asquith and others (2006, table 5)

λ̂1 (inches) τ̂2 τ̂3
0.964 0.581 0.452

Continuing the discussion with the code in example 7–14 , the L-moments are set by
the vec2lmom() function with the lscale=TRUE option being set because τ2 is pro-
vided and not λ2 as in virtually all other examples herein. The pargam() function esti-
mates the Gamma distribution parameters from the L-moments, and the parameters are
shown by the str() function. The QDF of the distribution for selected F values from
the nonexceeds() function is generated by quagam(). The resulting plot is shown
in figure 7.2. Example 7–14 shows that the τ gam3 = 0.407 of the fitted distribution by
lmomgam() is close as well but is less than the τ̂3 = 0.452 provided in table 7.8.

7–14
lmr <- vec2lmom(c(0.964,0.581,0.452), lscale=FALSE)
PARgam <- pargam(lmr); F <- nonexceeds()
print(PARgam)
$type
[1] "gam"
$para

alpha beta
0.6626539 1.4547565
$source
[1] "pargam"

#pdf("gammadistribution.pdf")
plot(F,quagam(F,PARgam), type="l")
LMRgam <- lmomgam(PARgam)
T3lmr <- lmr$TAU3; T3gam <- round(LMRgam$TAU3,3)
cat(c("TRUE L-skew=",T3lmr," L-skew of Gamma=",T3gam,"\n"))
TRUE L-skew= 0.452 L-skew of Gamma= 0.407
#dev.off()
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Figure 7.2. Quantile function of the Gamma distribution with α = 0.633 and β = 1.46 from
example 7–14

For the example, knowledgeable analysts might argue that an Exponential distribution
should be considered because the Exponential, like the Gamma distribution, also has
a lower bounds of zero. The lmomco package permits a quick comparison as shown in
example 7–15 .

7–15
LMRexp <- lmomexp(parexp(lmr)); T3exp <- round(LMRexp$TAU3,3)
cat(c("L-skew of Exponential =",T3exp,"\n"))
L-skew of Exponential = 0.333

The τ exp3 = 0.333 of the Exponential is much less than τ̂3 = 0.452 of storm depth and
much further from the τ gam3 = 0.407 of the fitted Gamma distribution. An immediate con-
clusion is that the Gamma distribution would be preferred for these sample L-moments
because λ̂1 and λ̂2 are both fit when a Gamma is used, and τ gam3 is closer to the τ̂3 than
τ
exp
3 . This interpretation has broader ramifications related to the selection of distributions
and is comprehensively explored in Chapter 10. J

The R environment has a built-in function named qgamma() for the quantiles of the
Gamma distribution and the quagam() function uses this function. To demonstrate that
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the functions are the same, the median of the example distribution is computed in exam-
ple 7–16 in which the Gamma parameters in PARgam come from example 7–15 .

7–16
# Native R code
qgamma(0.5, shape=PARgam$para[1], scale=PARgam$para[2])
[1] 0.5424176
# Using package lmomco
quagam(.5,PARgam)
[1] 0.5424176

When comparing the appearance of the calls to theQDFof theGammausing the built-in
R and lmomco styles, the author argues that the parameter list structure of lmomco provides
a generally cleaner interface—as does the style used by the lmom package as well—but
other factors certainly influence opinion. A feature of R is that it provides freedom of
design (see Section 1.2). J

7.2.4 Cauchy Distribution

The Cauchy distribution is a very heavy-tailed distribution. The tails are so long in fact
that the product moments and usual L-moments do not exist. However, if the smallest
and largest values are trimmed, then the moments from the sample do exist. The trimmed
L-moments (TL-moments) can be used with symmetrical trimming to provide a means of
parameter estimation for the Cauchy.

DISTRIBUTION FUNCTIONS

The distribution functions of the Cauchy having parameters ξ (location) and α (scale,
α > 0) are

f(x) =

(
πα

[
1 +

(
x− ξ
α

)2
])−1

(7.31)

F (x) =
arctan[(x− ξ)/α]

π
+ 0.5 (7.32)

x(F ) = ξ + α× tan[π(F − 0.5)] (7.33)

The range of the distribution is−∞ < x <∞.
The TL-moments with t = 1 symmetrical trimming are
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λ
(1)
1 = ξ (7.34)

λ
(1)
2 = 0.698α (7.35)

τ
(1)
3 = 0 (symmetrical) (7.36)

τ
(1)
4 = 0.343 (7.37)

The parameters in terms of the L-moments are

ξ = λ
(1)
1 (7.38)

α = λ
(1)
2 /0.698 (7.39)

Although the usual L-moments do not exist, the Cauchy distribution is the limiting
point {τ3→0, τ4→1} (Hosking, 2007b) on the L-moment ratio diagram of τ3 and τ4 (see
Chapter 10).

Using R Using R

The properties of the Cauchy distribution and some features of lmomco are now
explored. In example 7–17 , a Cauchy is specified using the vec2par() function. The
commonly used (in this dissertation) nonexceeds() function returns a list of selected F
values. The par2qua() function is used to convert the parameters into the quantiles of
the distribution. For the example, the quacau() function could have been used instead
because the par2qua() function simply dispatches to the quacau() function. The PDF
of the distribution is created with the pdfcau() function and is shown in figure 7.3.

7–17
cau <- vec2par(c(100,200), type="cau")
F <- nonexceeds(); x <- par2qua(F,cau)
#pdf("cau1.pdf")
plot(x,pdfcau(x,cau), type="l", ylab="f(x)")
#dev.off()

J

The L-moments of the Cauchy distribution do not exist because the extreme order
statistics (minimum and maximum or X1:n and Xn:n) of the distribution are both infi-
nite. However if these are trimmed, then the TL-moments can be computed. The largest
and smallest values in other words must be discarded for moments to exist. However,
an attempt is made to compute usual L-moments theoretically using the theoLmoms()
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Figure 7.3. PDF of example Cauchy distribution from example 7–17

function in example 7–18 . As the example shows, the integrate() function reports
non-finite function values—the heavy tails of the Cauchy distribution.

7–18
cau <- vec2par(c(100,200), type="cau")
theoLmoms(cau) # first try regular L-moments and get error
Error in integrate(XofF, 0, 1) : non-finite function value

J

The code in example 7–18 fails because of infinite extrema of the Cauchy distribution.
Instead, the theoTLmoms() function is used in example 7–19 with symmetrical t = 1

trimming (trim=1) and three TL-moments on the return (nmom=4). The TL-moments are
then shown by the str() function. Because the Cauchy is symmetrical, it is seen that
τ (1)3 = 0. The theoretical integration shows that λ(1)

1 = 100 and λ(1)
2 = 140, which by

eq. (7.35) should be λ(1)
2 = 0.698× 100 = 139.6.

7–19
the.lmr <- theoTLmoms(cau, trim=1, nmom=4)
str(the.lmr)
$ lambdas : num [1:4] 1.00e+02 1.40e+02 -9.47e-15 4.78e+01
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$ ratios : num [1:4] NA 1.40e+00 -6.79e-17 3.43e-01
$ trim : num 1
$ leftrim : NULL
$ rightrim: NULL
$ source : chr "theoTLmoms"

J

The ability for independent L-moment (or TL-moment) computation given a parameter-
ized distribution is a feature of lmomco—the package has functions such as theoLmoms()
and theoTLmoms() primarily for the purpose of permitting users to cross check the
lmomXXX() (L-moments of distribution) functions. A check on the output of the function
theoTLmoms() can be made by the lmomcau() function in example 7–20 and similarly
of the output to that in example 7–19 is obvious.

7–20
lmomcau(cau)
$lambdas
[1] 100.0000 139.6000 0.0000 47.8828
$ratios
[1] 0.000 1.396 0.000 0.343
$trim
[1] 1
$source
[1] "lmomcau"

J

7.2.5 Gumbel Distribution

Since the 1930s (Gilchrist, 2000, pp. 165–166), the two-parameter Gumbel distribution
(Extreme Value Type I) has been an extensively studied and used distribution in the
analysis of extremes such as floods, wave heights, rainfall, and lifetimes. The Gumbel
has been formulated for positive skewness. A negatively skewed version is acquired by
reflection and is known as the Reverse Gumbel distribution, which is described a separate
section.

The Gumbel distribution often provides reasonable fits to many types of natural sci-
ences data. For example, Thompson and others (2007) use the Gumbel to model a “dimen-
sionless distribution with fixed scale parameter so only the mean earthquake magnitude
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must be estimated for a region.”4 Clarke and Terrazas (1990) consider L-moments and the
Gumbel for flood-flow regionalization of the Rio Uruguai. The three-parameter Gener-
alized Extreme Value generally is now preferred over the Gumbel because the Gumbel
distribution is a special case of the Generalized Extreme Value. Specifically, the Gumbel
is not fit to the skewness of the data. Because the L-moments are such useful statistics for
computation of distribution skewness, the preference for the Generalized Extreme Value
is justified.

DISTRIBUTION FUNCTIONS

The distribution functions of the Gumbel having parameters ξ (location) and α (scale,
α > 0) are

f(x) = α−1 exp(Y ) exp[− exp(Y )] (7.40)

F (x) = exp[− exp(Y )] (7.41)

x(F ) = ξ − α log[− log(F )] (7.42)

where
Y = (x− ξ)/α (7.43)

The range of the distribution is−∞ < x <∞.
The L-moments are

λ1 = ξ + αρ ρ is Euler’s constant, 0.5772 . . . (7.44)

λ2 = α log(2) (7.45)

τ3 = log(9/8)/ log(2) = 0.1699 (7.46)

τ4 = [16 log(2)− 10 log(3)]/ log(2) = 0.1504 (7.47)

The parameters of the distribution are

α = λ2/ log(2) (7.48)

ξ = λ1 − αρ (7.49)

4 Thompson and others (2007) use the lmomco package for their L-moment computations. This
paper provides the first known citation of lmomco.
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Using R Using R

Hershfield (1961) provides a venerable, but still authoritative, reference for the depth-
duration frequency of rainfall in the United States. (Depth-duration frequency of rainfall
also is considered in Section 11.1.) The Gumbel distribution was used by Hershfield in the
regional study along with presumably considerable smoothing of contour lines of equal
depth. The data listed in example 7–21 represent the 24-hour storm depths in inches
having the respective annual recurrence intervals estimated by the author (Asquith) for
the southern tip of Lake Michigan near the Illinois and Indiana border. An equivalent
Gumbel distribution to these data is estimated—emphasis is needed that the data do not
represent a random sample. Therefore, special processing is needed.

7–21
P <- c(2.8, 3.5, 4.0, 4.6, 5.2, 5.6) # precipitation data, inches
T <- c(2, 5, 10, 25, 50, 100) # recurrence interval, years
F <- T2prob(T) # re-express in nonexceedance probability

# custom quantile function of Gumbel, with no check on parameters
"myquagum" <- function(f, para) {

return(para[1] - para[2] * log(-log(f)))
}

# objective function to minimize
"afunc" <- function(x, RHS=NULL, F=NULL) {

return(sum((RHS - myquagum(F,x))^2))
}

# perform non-linear optimization
result <- optim(c(4,2), fn=afunc, RHS=P, F=F)
PAR <- vec2par(result$par, type="gum") # extraction of parameters

#pdf("tp40gum.pdf")
plot(F,quagum(F,PAR), type="l",

xlab="NONEXCEEDANCE PROBABILITY",
ylab="RAINFALL DEPTH, INCHES")

points(F,P)
#dev.off()

In the example, a customQDF of the Gumbel distribution is created. This is done so that
a currently (2011) hardwired parameter validation component of the quagum() function
conducted by the are.pargum.valid() function is bypassed. The objective function
afunc() returns the sum of square error for the x(F ) values in P for the desired F
in F. The optim() function is used with initial starting parameter values of GUM(4, 2),
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Figure 7.4. Gumbel distribution fit by non-linear optimization to data available from Hershfield
(1961) from example 7–21

which were chosen by inspection of the values in P. The optimization converges by least
squares, and the results (solid line) are shown in figure 7.4. The figure shows remarkably
good agreement with the data points (open circles). Thus, example 7–21 shows how a
distribution can be fit in a posterior manner to historical data or fit to selected information
about the distribution. J

As another example with the Gumbel distribution, an alternative method for fitting
distributions, which has not previously been described in this dissertation, is used—the
method of percentiles (Gilchrist, 2000, p. 34). (Karian and Dudewicz (2000) provide
an extensive discussion on the method in the context of the Generalized Lambda dis-
tribution.) The method estimates the distribution parameters such that specific quan-
tiles are achieved. A different quantile is needed for each parameter in the distribution.
For the Gumbel, two quantiles are needed. For demonstration, suppose that the sample
x̂0.50 = 8,000 (median) and x̂0.90 = 17,000 (90th percentile) are available and a Gumbel
fit to these values is needed. Using eq. (7.42), one can write
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x̂0.50 = 8000 = ξ − α log[− log(0.50)] (7.50)

x̂0.90 = 17000 = ξ − α log[− log(0.90)] (7.51)

and because of two equations and two unknowns, these become

x̂0.90 − x̂0.50 = 9000 = 2.250α− 0.3665α (7.52)

and solving for α
α = 4777 (7.53)

and solving for ξ
ξ = 8000 + 4777 log[− log(0.50)] = 6249 (7.54)

This solution by the method of percentiles is shown in figure 7.5, which was created by
example 7–22 . The example is unusual here in that F ′ (exceedance probability) is used
instead ofF on the horizontal axis. The x̂0.50 (on right) and x̂0.90 (on left) values are plotted
as squares to show that GUM(6249, 4777) passes through the two points as the method
of percentiles forced.

7–22
PARgum <- vec2par(c(6249,4777), type="gum")
F <- nonexceeds(); QUANTILE <- quagum(F,PARgum)
#pdf("gumMoP.pdf")
plot(1-F, QUANTILE, type="l", xlab="EXCEEDANCE PROBABILITY")
points(c(1-0.5,1-0.9), c(8000,17000), pch=15, cex=2)
#dev.off()

J

7.2.6 Reverse Gumbel Distribution

The Reverse Gumbel distribution (Hosking, 1995) is a reflection (see page 36) of the Gum-
bel distribution. The Reverse Gumbel as implemented here supports right-tail censoring
so could also be labeled as a Right-Censored Reverse Gumbel. The QDF of the Reverse
Gumbel is

x(F )revgum = −x(1− F )gum (7.55)

where x(F )gum is the QDF of the Gumbel.
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Figure 7.5. Gumbel distribution fit by method of percentiles from example 7–22

The distribution is useful in analysis of right-tail censored (type I and type II censor-
ing, see Section 12.2) data. The distribution is the distribution of a log-transformed two-
parameter Weibull distribution, which finds a place in distributional analysis of lifetime
or reliability studies. To use the Reverse Gumbel distribution in the lmomco package, a
right-tail censoring fraction ζ is needed because support for right-tail censoring is avail-
able. The censoring fraction could be estimated as the number of observed (noncensored)
valuesm divided by the sample size n or

ζ = m/n (7.56)

The ζ parameter is not explicitly another parameter of the distribution in the sense
that it only indirectly controls the geometry of the fitted distribution. If ζ = 1, then a
Reverse Gumbel distribution is fit without right censoring and the usual L-moments are
used. When ζ < 1, then the B-type L-moments, through the B-type probability-weighted
moments, are used. Both of these “B-type” moments are described in Section 12.2.
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DISTRIBUTION FUNCTIONS

The distribution functions of the Reverse Gumbel having parameters ξ (location),
α (scale, α > 0), and ζ (right-censoring fraction)

f(x) = −α−1 exp(Y )[exp(exp(Y ))] (7.57)

F (x) = 1− exp[− exp(Y )] (7.58)

x(F ) = ξ + α log[− log(1− F )] (7.59)

where
Y = (x− ξ)/α (7.60)

The range of the distribution is−∞ < x <∞.
The B-type L-moments of the distribution are

λB1 = ξ − αρ− αζ1 ρ is Euler’s constant, 0.5772 . . . (7.61)

λB2 = α[log(2) + ζ2 − ζ1] (7.62)

where

ζ1 = Ei[ − log(1− ζ)] (7.63)

ζ2 = Ei[−2 log(1− ζ)] (7.64)

and
Ei(x) =

∫ ∞
x

t−1 exp(−t) dt (7.65)

is the exponential integral as defined by Hosking (1995, p. 558, A.9). Jeffrey (2004, p. 168)
provides more details concerning the exponential integral.

The parameters of the distribution are

α =
λB2

log(2) + ζ2 − ζ1
(7.66)

ξ = λB1 + α(ρ+ ζ1) (7.67)

Using R Using R

The lmomco package supports the Gumbel and Reverse Gumbel as separate distribu-
tions. Using the Reflection Rule (see page 36), the two distributions are now explored.
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Example 7–23 begins the exploration, which will be based on simulated data from a
Gumbel parent. A sample size of n = 1,000 is drawn from a Gumbel distribution, using
rlmomco(), into variable X. The Gumbel has L-moments λ1 = 400 and λ2 = 1200, and
pargum() computes the parameters. The Cunnane plotting positions are computed by
pp(X, a=0.40).

7–23
nsim <- 1000
lmr <- vec2lmom(c(400,1200))
X <- rlmomco(nsim, pargum(lmr))
PP <- pp(X, a=0.40)

Continuing in example 7–24 , for the random sample X, the first five L-moments are
computed by lmoms(X), and the L-moments also are computed for the negated sample
by lmoms(-X). Finally, four different lmomco parameter lists (see page 163 and ex. 7–1 )
are computed—two lists for the Gumbel and two lists for the Reverse Gumbel.

7–24
lmr <- lmoms(X) # L-moments of Gumbel
neglmr <- lmoms(-X) # L-moments of -X

PARgumC <- pargum(lmr) # Parameters of Gumbel
PARgumD <- pargum(neglmr) # Parameters of Gumbel

PARrevgumC <- parrevgum(lmr) # Parameters of rev Gumbel
PARrevgumD <- parrevgum(neglmr) # Parameters of rev Gumbel

A comparison of five different Gumbel-like distributions plotted to the L-moments of
example 7–24 is shown in figure 7.6, which was produced by example 7–25 . Either by
the constraints of grey-scale-only printing or the general complexity of the discussion of
the example difficult. Therefore, step-by-step discussion is provided as code comments.
It might be helpful for readers to run example 7–25 by plotting one curve at a time.

7–25
#pdf("revgum.pdf")
plot(PP, sort(X), type="n",

xlab="NONEXCEEDANCE PROBABILITY",
ylab="QUANTILE", ylim=c(-5000,15000))

lines(PP, quagum(PP,PARgumC), col=2, lwd=5) # red and thick
# Curve mimics the parent if nsim is large enough

lines(PP, quagum(PP,PARgumD))
# Thin black curve is Gumbel fit to negated values. The mean
# is reduced, L-scale is not. Curve plots under previous. Both
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# distributions have the same L-skew.

lines(PP, -1*quagum((1-PP),PARgumD), col=2, lty=4, lwd=5)
# Curve is a manually reversed Gumbel fit to L-moments of
# negated values. Curve is thick, red, and dashed.

lines(PP, quarevgum(PP,PARrevgumC), col=4, lwd=2)
# Curve (solid blue) is a reversed Gumbel fit to L-moments of X
# and over plots previous curve. So manual reversal fit to -X
# is the same as using the reversed Gumbel.

lines(PP, -1*quarevgum((1-PP),PARrevgumD), col=5, lwd=2)
# Curve (light blue) is a manually reversed Gumbel fit to
# L-moments of negated values (overplots the thick red curve
# curve, first curve drawn). So reversing a reversed Gumbel fit
# to -X recovers Gumbel fit to X.

legend(0,10000,
c("Gumbel fit to C PWMs",

"Gumbel fit to D PWMs",
"Hand-reversed Gumbel fit to D PWMs",
"Reverse Gumbel fit to Type C PWMs",
"Reverse Gumbel fit to Type D PWMs"),

lwd=c(5,1,5,2,2), lty=c(1,1,4,1,1), col=c(2,1,2,4,5))
#dev.off()

To complete the discussion of the comparison of Gumbel-like distributions started in
example 7–23 , example 7–26 computes the theoretical L-moments for each of the four
parameter lists. The results are not shown in example 7–26 but are listed in table 7.9.

7–26
theoLmoms(PARgumC); theoLmoms(PARgumD)
theoLmoms(PARrevgumC); theoLmoms(PARrevgumD)

Table 7.9. Comparison of computed L-moments for four Gumbel distribution parameter lists from
example 7–26

Function theoLmoms() λ1 λ2 τ3 τ4 τ5
PARgumC 502.5 1264 0.1699 0.1504 0.0559

PARgumD −502.5 1264 .1699 .1504 .0559

PARrevgumC 502.5 1264 −.1699 .1504 −.0559

PARrevgumD −502.5 1264 −.1699 .1504 −.0559

J

194



Texas Tech University,William H. Asquith, May 2011

0.0 0.2 0.4 0.6 0.8 1.0

−
50

00
0

50
00

10
00

0
15

00
0

NONEXCEEDANCE PROBABILITY

Q
U

A
N

T
IL

E
Gumbel fit to C PWMs
Gumbel fit to D PWMs
Hand−reversed Gumbel fit to D PWMs
Reverse Gumbel fit to Type C PWMs
Reverse Gumbel fit to Type D PWMs

Figure 7.6. Comparison five Gumbel-like distributions as sequentially described in example 7–25

For another example of the Reverse Gumbel, Hosking (1995, p. 558) reports that the
Reverse Gumbel is “the distribution of logX whenX has a two-parameter Weibull distri-
bution.” The two-parameter Weibull is a three-parameter Weibull with a lower bounds of
zero. This statement is evaluated using computational tools provided by R and the lmomco
package in example 7–27 .

7–27
nsam <- 40; nsim <- 10
for(i in 1:nsim) { # 1:nsim, is same as seq(1,nsim)

x <- sort(rweibull(nsam, shape=1.5, scale=10))
PP <- pp(x)
lmr <- lmoms(x); lmrlg <- lmoms(log(x))
PARrevgum <- parrevgum(lmr); PARrevgumlg <- parrevgum(lmrlg)
plot(PP,x, ylim=c(0,40))
lines(PP,quarevgum(PP,PARrevgum)) # thin line
lines(PP,exp(quarevgum(PP,PARrevgumlg)), lwd=3) # thick line
legend(0,30,c("Reverse Gumbel fit to X",

"Reverse Gumbel fit to ln(X)"),
lwd=c(1,4))

Sys.sleep(2)
}
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The built-in Weibull distribution of R is a two-parameter version, and random variates
are generated by rweibull(). The example proceeds by simulating n = 40 samples 10
times. The L-moments are computed for x and log(x) (natural logarithm) of the simu-
lated and sortedWeibull sample. The Reverse Gumbel distribution is fit to the L-moments
by the two parrevgum() calls. Although the plots are not shown here, a plot of the sam-
ple and the two fitted distributions is generated and the process repeated nsim times. The
Sys.sleep() function causes the process to suspend for about 2 seconds before repeat-
ing so that the user can watch the results in a poor sort of animation. Alternatively, the
user could bound the code with a pdf() function at at beginning and dev.off() and
the end and then page through the resulting portable document format (PDF) file. J

7.2.7 Kumaraswamy Distribution

The Kumaraswamy distribution, which is named by Jones (2009), but was introduced in
the hydrologic literature by Kumaraswamy (1980), is a relatively simple distribution which
has doubly-bounded support on the interval [0, 1]. Jones (2009) provides the first exten-
sive evaluation of the Kumaraswamy distribution and considers the L-moments of the
distribution. The distribution mimics the Beta distribution but has explicit distributions
functions and reliance on special beta functions is not necessary. However, Jones (2009,
p. 70) states that the Beta distribution “[continues to] provide the premier family of con-
tinuous distributions on bounded support.”

DISTRIBUTION FUNCTIONS

The distribution functions of the Kumaraswamy having parameters α (scale, α > 0)
and β (scale, β > 0) are

f(x) = αβxα−1(1− xα)β−1 (7.68)

F (x) = 1− (1− xα)β (7.69)

x(F ) = [1− (1− F )1/β]1/α (7.70)

The range of the distribution is 0 ≤ x ≤ 1.
The L-moments with η = 1 + 1/α are
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λ1 = βB(η, β) (7.71)

λ2 = β[B(η, β)− 2B(η, 2β)] (7.72)

τ3 =
B(η, β)− 6B(η, 2β) + 6B(η, 3β)

B(η, β)− 2B(η, 2β)
(7.73)

τ4 =
B(η, β)− 12B(η, 2β) + 30B(η, 3β)− 40B(η, 4β)

B(η, β)− 2B(η, 2β)
(7.74)

τ5 =
B(η, β)− 20B(η, 2β) + 90B(η, 3β)− 140B(η, 4β) + 70B(η, 5β)

B(η, β)− 2B(η, 2β)
(7.75)

where B(a, b) is the beta function that is shown in eq. (3.10). Readers are encouraged to
compare this system of equations5 for the L-moments to those for first five L-moments
in terms of probability-weighted moments on page 121. The parameters can be solved
numerically by minimizing the combined Pythagorean distance between the combined
square errors (τ3− τ̂3)2 and (τ4− τ̂4)2. This technique is implemented for the parkur()
function, which uses the optim() function of R for minimization.

The mode (α > 1, β > 1) and antimode (α < 1, β < 1) are

Mode/Antimodekur =

(
α− 1

αβ − 1

)1/α

(7.76)

and finally, the Kumaraswamy distribution for α = β = 1 becomes the Uniform distribu-
tion.

Using R Using R

An example conversion of L-moments (λ1 = 0.7, λ2 = 0.2) to Kumaraswamy param-
eters and back again with the lmorph() function being used to shorten the output is
shown in example 7–28 .

7–28
lmorph(lmomkur(parkur(vec2lmom(c(0.7, 0.2)))))$lambdas[1:2]
[1] 0.7 0.2

The purpose of the example is to demonstrate how these four functions of lmomco can
be chained together and more importantly how the numerical methods of the parkur()
function can be tested because the values λ1 = 0.7 and λ2 = 0.2 are recovered. J

5 The author derived the relation for τ5 for this dissertation; whereas, Jones (2009) is the source for
the others. However, the derivation is not too difficult given the established pattern (see eq. (6.37)).
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For the Kumaraswamy, Jones (2009, figs. 2 and 4) provides contour plots of τ3 and τ4
based on natural logarithm values for α and β. Example 7–29 reproduces these two plots
using the contourplot() of the lattice package. The two plots are respectively shown
in figure 7.7.

7–29
A <- B <- exp(seq(-3,5, by=.05))
logA <- logB <- T3 <- T4 <- c(); i <- 0
for(a in A) {

for(b in B) {
i <- i + 1
parkur <- list(para=c(a,b), type="kur");
lmr <- lmomkur(parkur)
logA[i] <- log(a)
logB[i] <- log(b)
T3[i] <- lmr$TAU3
T4[i] <- lmr$TAU4

}
}
library(lattice) # to acquire the contourplot function
#pdf("kurT3.pdf")
contourplot(T3~logA+logB, cuts=20, lwd=0.5, label.style="align",

xlab="LOG OF ALPHA", ylab="LOG OF BETA",
xlim=c(-3,5), ylim=c(-3,5),
main="L-SKEW FOR KUMARASWAMY DISTRIBUTION")

#dev.off()
#pdf("kurT4.pdf")
contourplot(T4~logA+logB, cuts=10, lwd=0.5, label.style="align",

xlab="LOG OF ALPHA", ylab="LOG OF BETA",
xlim=c(-3,5), ylim=c(-3,5),
main="L-KURTOSIS FOR KUMARASWAMY DISTRIBUTION")

#dev.off()

Inspection of figure 7.7 for α = β = 1 (natural logarithms result in zero on each axis)
shows τ3 = 0 and τ4 = 0, which is consistent with the Uniform distribution, which is
symmetrical and has no peak. J

7.2.8 Rayleigh Distribution

The Rayleigh distribution has applications in modeling the lifetimes of rapidly aging sub-
jects (Rizzo, 2008, p. 249) and as a “consequence of the central limit theorem, when the
scattering medium contains a large number of randomly distributed [scattering angles]
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Figure 7.7. Relation between Kumaraswamy distribution parameters and L-skew and L-kurtosis
from example 7–29

199



Texas Tech University,William H. Asquith, May 2011

uniformly distributed between 0 and 2π” (Raju and Srinivasan, 2002, p. 872). Hosking
(1986, p. 65) provides the L-moments of the Rayleigh. Like the other two-parameter dis-
tributions of this chapter, the Rayleigh is not fit to the skewness or higher measures of the
shape of the data.

DISTRIBUTION FUNCTIONS

The distribution functions of the Rayleigh having parameters ξ (location) and α (scale,
α > 0) are

f(x) =
(x− ξ) exp(Y )

α2
(7.77)

F (x) = 1− exp(Y ) (7.78)

x(F ) = ξ +
√
−2α2 log(1− F ) (7.79)

where
Y =

−(x− ξ)2

2α2
(7.80)

The range of the distribution is 0 < x <∞.
The L-moments are

λ1 = ξ + α
√
π/2 (7.81)

λ2 = 1
2
α(
√

2− 1)
√
π (7.82)

and the L-moment ratios are

τ2 = 1−
√

1/2 ≈ 0.2929 for ξ = 0 (7.83)

τ3 =
1− 3/

√
2 + 2/

√
3

1− 1/
√

2
≈ 0.1140 (7.84)

τ4 =
1− 6/

√
2 + 10/

√
3− 5

√
4

1− 1/
√

2
≈ 0.1054 (7.85)

The α parameter for a known ξ is

α =
λ1 − ξ√
π/2

(7.86)

and the parameters for an unknown ξ are
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α =
2λ2√

π(
√

2− 1)
(7.87)

ξ = λ1 − α
√
π/2 (7.88)

The mode of the distribution is
Moderay = α (7.89)

which, like discussed for the Gamma distribution, can be used for parameter estimation
if the mode of the distribution is known or otherwise needs to be locked-in at a given
position. This application is of interest in use of the Rayleigh distribution in streamflow
hydrograph modeling in which the peak streamflow corresponds to the mode of the
distribution.

Using R Using R

UsingL-moments fromexample 7–14 , Rayleighdistributions as one- and two-parameter
versions are fit in example 7–30 . The PDFs of the two distributions are shown in figure 7.8.
The figure shows that the general shape of the two distributions are similar, but that the
location and shape vary when ξ is specified.

7–30
lmr <- vec2lmom(c(0.964,0.581,0.452), lscale=FALSE)
PARrayA <- parray(lmr); PARrayB <- parray(lmr, xi=0)
#pdf("rayleighA.pdf")
layout( matrix(1:2, byrow=TRUE) )
check.pdf(pdfray,PARrayA, plot=TRUE)
check.pdf(pdfray,PARrayB, plot=TRUE)
#dev.off()

J

For a final example, suppose that streamflow hydrograph models having one unit of
depth of runoff from a 36 square-mile watershed need to be created. The Gamma and
Rayleigh distributions are chosen because each can attain shapes similar to observed
streamflow hydrographs. Generally, streamflow hydrographs have a steep rising tail and
drawn-out receding tail. The two distributions are readily fit to the time of peak or the
mode of the distribution. Suppose also that this watershed generally peaks in about
5 hours from the inception of rainfall. The two distributions are fit and plotted next.

For a ξ = 0 Rayleigh distribution, the parameter αray = Mode, so αray = 5 for the
problem at hand. The parameters of the Gamma now require estimation. Observing that
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Figure 7.8. Comparison two Rayleigh distributions fit as one- or two-parameter versions to L-
moments of λ1 = 0.964 and λ2 = 0.581 for unknown (top) and known (ξ = 0, bottom)
lower bounds from example 7–30

the parameters of the Gamma in terms of the mode and mean λ1 are

αgam = λ1/(λ1 −Mode) (7.90)

βgam = λ1/Mode (7.91)

all that is required therefore to fit the Gamma is the λ1 of the Rayleigh fit that is computed
by the lmomray() function using the parameters of the Rayleigh. These computations
are made in example 7–31 . The PDFs of the two distributions are shown in figure 7.9.

7–31
themode <- 5 # the peak or mode is at 5 hours
PARray <- vec2par(c(0,themode), type="ray") # fit the Rayleigh
LMRray <- lmomray(PARray)

mu <- LMRray$L1 # extract the mean

# Now fit the Gamma distribution
GAMalpha <- mu/(mu - themode)
GAMbeta <- mu/GAMalpha
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PARgam <- vec2par(c(GAMalpha,GAMbeta), type="gam")

F <- seq(0.0001,0.999, by=0.001) # nonexceedance probabilities
x.ray <- quaray(F,PARray)
x.gam <- quagam(F,PARgam)
x <- sort(c(x.ray, x.gam)) # combine x’s into a single vector
y <- c(pdfray(x,PARray), pdfgam(x,PARgam)) # for plotting limits

#pdf("rayleighB.pdf")
plot( x, pdfray(x,PARray), type="l", ylim=c(min(y),max(y)),

xlab="TIME, IN HOURS",
ylab="UNITS OF WATERSHED DEPTH PER HOUR") # Rayleigh dist.

lines(x, pdfgam(x,PARgam), lty=2) # Gamma distribution (dashed)
#dev.off()
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Figure 7.9. Comparison two Rayleigh distributions (solid line) and Gamma distribution (dashed
line) fit to a time to peak (mode) of 5 hours from example 7–31

Although both streamflow hydrographs have unit volume (unit area under a PDF), the
figure shows that Gamma has a larger peak or mode (about 50 percent more) than the
Rayleigh. This difference comes by a contraction in general width of the Gamma hydro-
graph relative to the Rayleigh. The rising limbs of the hydrographs (< Mode) have dif-
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ferent first derivative behavior. The Gamma has a rising limb inflection point and the
Rayleigh does not. J

7.2.9 Rice Distribution

The Rice distribution (Sijbers and others, 1998; Raju and Srinivasan, 2002) has applica-
tions in modeling many types of backscatter, communications, and medical imaging
applications. Like the other two-parameter distributions of this chapter, the Rice is not
fit to the skewness or higher measures of shape of the data. The random variable R is
RICE(ν,α) if R =

√
X2 + Y 2 where the random variableX is NOR(ν cos θX , α2) and Y

is NOR(ν sin θY , α2) for random variable θ on the interval [0, 2π]. Readers are asked to
note the application of two random variables of the θ. The author used numerical exam-
ples to confirm that two are needed as the literature is ambiguous. The parameter ν can
be thought of as a signal and α as a noise, and the ratio between these concepts represents
a form of signal-to-noise ratio or SNR. Sijbers and others (1998, p. 358) use a definition of
SNR = ν/α, whereas, Raju and Srinivasan (2002, p. 872) use a definition of SNR = µ/σ

where µ is the mean and σ is the standard deviation. For this dissertation and in the
lmomco package, SNR is only considered as the ratio ν/α. The Rice distribution also is
associated with a phenomena known as “Rician fading.”

Rician fading6 is

A stochastic model for radio propagation anomaly caused by partial cancella-
tion of a radio signal by itself—the signal arrives at the receiver by two differ-
ent paths, and at least one of the paths is changing (lengthening or shortening).
Rician fading occurs when one of the paths, typically a line of sight signal, is
much stronger than the others. In Rician fading, the amplitude gain is character-
ized by a Rician [Rice] distribution.

DISTRIBUTION FUNCTIONS

The distribution functions of the Rice having parameters ν (location, ν ≥ 0) andα (scale,
α > 0) are

6 This paragraph is verbatim fromhttp://en.wikipedia.org/wiki/Rician_fading.
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f(x) =
x

α2
exp

(
−x

2 + ν2

2α2

)
I0

(
xν

α2

)
(7.92)

F (x) = 1−Q1

(
ν

α
,
x

α

)
(7.93)

x(F ) has no explicit analytical form

If ν = 0, the Rayleigh distribution with ξ = 0 and α = α results.
The range of the distribution is 0 < x <∞.
A useful definition for the Rice distribution is the signal-to-noise ratio SNR

SNR = ν/α = ζ (7.94)

For the PDF definition, where the function I0(z) is the modified Bessel function of the
first kind for a real number z, which is defined in integral form as

Iv(z) =
1

π

∫ π

0

exp(z cosΘ) cos(vΘ) dΘ (7.95)

and in series form as

Iv(z) = (z/2)v
∞∑
k=0

(z2/4)k

Γ(k + 1)Γ(v + k + 1)
(7.96)

Hence, I0(z) is

I0(z) =
1

π

∫ π

0

exp(z cosΘ) cos(Θ) dΘ (7.97)

or

I0(z) =
∞∑
k=0

(z2/4)k

Γ(k + 1)2
(7.98)

The Bessel function is implemented in R by the besselI() function.

For the CDF definition, Q1 is the Marcum Q function.7 The Marcum Q function is
defined in integral form by

QM(a, b) =
1

aM−1

∫ ∞
b

xM exp[−(x2 + a2)/2] IM−1(ax) dx (7.99)

and in series form by
7 Want an interesting tour through the mathematics of the signal processing and radar detection
field? Google “Marcum Q function.”
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QM(a, b) = exp[−(a2 + b2)/2]
∞∑

k=1−M

(
a

b

)k
Ik(ab) (7.100)

where Ik(z) is the Bessel function. For the Rice distribution,M = 1, which results in

Q1(a, b) = exp[−(a2 + b2)/2]
∞∑
k=0

(
a

b

)k
Ik(ab) (7.101)

The productmoments (mean and variance) of the Rice distribution require theLaguerre
polynomial given by

L1/2(z) = exp(z/2)× [(1− z)I0(−z/2)− zI1(−z/2)] (7.102)

whereL1/2(0) = 1 and
√
π/2×L1/2(−z2/2)→ z as z becomes large. Using the Laguerre

polynomial, the Rician mean is

µ = α
√
π/2× L1/2(−1

2
(ν/α)2) (7.103)

and the Rician variance is

σ2 = 2α2 + ν2 − α2(π/2)L2
1/2(−1

2
(ν/α)2) (7.104)

These two equations clearly are complex. For instance, two Bessel functions are involved
but notice the square of the ν/α term or SNR that occurs in both the definitions of mean
and variance. A key toworkingwith theRice distribution is understanding of the influence
of ν/α on the moments.

The L-moments of the Rice distribution are difficult to express. However, the recog-
nition that τ2 can be interpreted as a signal-to-noise ratio provides a key—τ2 should be
proportional to SNR. The relations between τ2 and functions based on the SNR can pro-
vide for parameter estimation by the method of L-moments. It was discovered by thought
and numerical experimentation for this dissertation that

ν/α = SNR = ζ = F(τ2) (7.105)

where F(τ2) is an unknown function that is uniquely a function of τ2. If the quantity ζL05
is defined as

ζL05 =
√
π/2× L1/2(−1

2
ζ2) (7.106)
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it was discovered again by thought and numerical experimentation for this dissertation
that

ζL05 = G(τ2) (7.107)

where G(τ2) is an unknown function, which also is uniquely a function of τ2. The param-
eter α can be estimated using µ from eq. (7.103) by

α = µ× G(τ2) (7.108)

and subsequently ν can be estimated by

ν = α×F(τ2) (7.109)

Thus, two functional relations, empirical approximations, or simply lookup tables of
F(τ2) and G(τ2) are needed. The direct application of linear interpolation through lookup
tables is used by the lmomco package.

Using R Using R

The Marcum Q function Q1(a, b) function can be computed by functions defined in
examples 7–32 and 7–33

7–32
"MarcumQ1" <- function(a, b, terms=10) {

if(length(a) > 1) stop("a must be scalar")
if(length(b) > 1) stop("b must be scalar")
ab <- a*b; a.over.b <- a/b
A <- exp(-(a^2 + b^2)/2)
vals <- sapply(0:terms,

function(v) { return(a.over.b^v * besselI(ab, n=v)) })
return( A * sum(vals) )

}

7–33
"MarcumQ1sincos" <- function(a,b) {

if(a < 0 | b < 0 | b <= a) stop("B > A >= 0 is not true")
eta <- a/b; eta2 <- 2*eta; etasq <- eta^2
fn <- function(t) {

sint <- sin(t)
tmp <- 1 + eta2*sint + etasq
K <- (1 + eta*sint) / tmp; L <- -(b^2/2)*tmp
return(K*exp(L))

}
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val <- integrate(fn, -pi, pi)$value
return( 1/(2*pi) * val )

}

# Test the Marcum Q1 function
MarcumQ1(2,3)
[1] 0.2143619
MarcumQ1sincos(2,3)
[1] 0.2143621

where example 7–33 shows equivalence. J

The cdfrice() function in the lmomco package uses the integrate() function of R

on pdfrice() instead of the Marcum Q function to mitigate for potential complexities
in using the mathematics of examples 7–32 and 7–33 . However for illustration, exam-
ple 7–34 provides for the Rice CDF using theQ1(a, b) function of example 7–32 .

7–34
"cdfrice.by.MarcumQ1" <- function(x, para=NULL, ...) {

A <- para$para[1]; v <- para$para[2]
a <- v/A
f <- vector(mode="numeric")
for(i in 1:length(x)) {

if(x[i] < 0) {
f[i] <- 0

} else if(x[i] == Inf) {
f[i] <- 1

} else {
b <- x[i]/A
Q1 <- MarcumQ1(a,b, ...)
f[i] <- 1 - Q1

}
}
return(f)

}

Finally, example 7–35 creates in figure 7.10 a graphical check on equivalency between
the integration of the pdfrice() and the CDF definition using the Marcum Q function.

7–35
PARrice <- vec2par(c(20,40), type="rice")
dF <- 0.1; x <- seq(0,100, by=dF)
testpdf <- pdfrice(x, para=PARrice)
sum(testpdf)*dF # following sum should be quite close to unity
[1] 0.9977918
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#pdf("riceA.pdf")
layout(matrix(1:2, byrow=TRUE))
plot(x, testpdf, type="l", ylab="PROBABILITY DENSITY") # top plot
plot(x, cdfrice.by.MarcumQ1(x, para=PARrice),

lwd=4, lty=3, type="l", ylab="CUMULATIVE PROBABILITY") #
dots

lines(x,cdfrice(x, para=PARrice)) # line on bottom plot
#dev.off()
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Figure 7.10. Example PDF and two computations of CDF of a RICE(20, 40) distribution from
example 7–35

J

The Laguerre polynomial of eq. (7.102) is implemented by the LaguerreHalf() func-
tion of lmomco. This function is used in example 7–36 . The example shows similar results
for computed and simulated (999 simulations) of RICE(20, 40) random variables.

7–36
PARrice <- vec2par(c(20,40), type="rice")
mu <- 40*sqrt(pi/2)*LaguerreHalf(-(20/40)^2/2)
smu <- mean(quarice(runif(999), PARrice))
cat(c("# MEAN=", round(mu, digits=3),
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" and SIMULATED MEAN=", round(smu, digits=3),"\n"))
# MEAN= 53.218 and SIMULATED MEAN= 53.439

J

The final example in 7–37 for the Rice distribution provides an extensive comparison
of the shapes of the CDF and uses the several of the Rican functions of lmomco including
lmomrice(), cdfrice(), and quarice() for a range of SNR from near that of the
Rayleigh distribution (SNR � 1) to the Normal distribution (SNR � 1). The example
creates figure 7.11. Detailed discussion of the figure is required.

7–37
nu <- 17 # the signal
SNR <- c(0.07, 0.2, 0.3, 0.5, 1, 2, 5, 10, 22, 25, 40, 60)
WH <- c( 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3)
ymax <- 0.9999; ymin <- 0.0001
ylim <- qnorm(c(ymin,ymax))
#pdf("ricecdfcomp.pdf")
plot(c(10,100), ylim, ylim=ylim, type="n", log="x",

xlab="QUANTILE", ylab="STANDARD NORMAL VARIATE")
for(i in 1:length(SNR)) {

snr <- SNR[i]; wh <- WH[i]
rice <- vec2par(c(nu,nu/snr), type="rice")
ifelse(snr > 1, size <- 2, size <- 0.5)
lmr <- lmomrice(rice, nmom=2) # 2 moments for speed
mu <- lmr$lambdas[1]
x <- quarice(c(ymin,nonexceeds(), ymax),rice)

lines(x, qnorm(cdfrice(x,rice)), lty=wh, lwd=size)
fmean <- cdfrice(mu,rice); xmed <- quarice(0.5,rice)
points(c(mu, mu), qnorm(c(fmean,fmean)), cex=2 )
points(c(xmed,xmed), qnorm(c(0.5, 0.5)), pch=16)

}
legend(30,qnorm(0.05), bty="n", pt.cex=c(NA, NA, NA, NA, 2, 1),

c("Rayleigh distribution",
"Rice distribution", "Rice via normal with Laguerre",
"Rice via normal without Laguerre", "Mean", "Median"),

lty=c( 4, 1, 2, 3, 0, 0), pch=c(NA, NA, NA, NA, 1, 16))
#dev.off()

The Rice distributions in figure 7.11, albeit none all are fully drawn because of axis
limits, are extremely varied. The minimum SNR is so low that Rice→ Rayleigh and thus
τ2 ≈ 0.2929; as a result, the Rayleigh distribution is drawn on the far right (the thin dash-
dot line). The solid lines represent true Rice distributions; whereas the two dashed lines
that also the nearly vertical represent Rice→ Normal; as a result, Normal distribution
fits using the Rician mean and variance in eqs. (7.103) and (7.104) using the Laguerre
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polynomial. The single dotted and near vertical lines represent a Normal distribution
with the limiting mean (µ = ν) and variance (σ2 = α2) of the Rice distribution for very
high SNR. Finally, the distribution lines double in thickness when the SNR ≥ 1. The
mean and median of the distributions are indicated by open and filled circular symbols,
respectively.

Readers are encouraged to repeat example 7–37 withmore or less expansive horizontal
and vertical axis limits to see the real breadth of “Rician fits” for an extreme range of SNR.
Readers also are encouraged to change the vertical axis transformation from qnorm() to
just linear and repeat the example.
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Figure 7.11. Comparison of CDF for signal ν = 17 for a range of signal-to-noise (SNR) ratios for
Rice distribution from example 7–37. The thick lines represent SNR greater than unity. Increas-
ing SNR shifts the curves from right to left, and the curves become near vertical near ν = 17.

The Rice distribution function of lmomco use the Rayleigh and Normal distributions as
limiting conditions for hard-wired thresholds for SNR that have been determined by the
author using numerical experiments to trap under and overflows. The documentation of
lmomco provides these threshold values. J
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The Rice distribution has an interesting {τ3, τ4} relation to depict on an L-moment ratio
diagram. L-moment ratio diagrams, which have not yet been introduced, are thoroughly
described in Chapter 10, and some readers might need to consult that chapter first. The
Rice distribution is not treated in that chapter but the trajectory the distribution on the
diagram is shown in this section. The {τ3, τ4} relation of the Rice distribution in particular
is not a constant like most other two parameter distributions (a notable exception is the
Gamma distribution, see page 300).

In example 7–38 , an L-moment ratio diagram is plotted by the plotlmrdia() func-
tion, which relies on the lmrdia() function to provide lookup tables of {τ3, τ4} by dis-
tribution. The diagram is shown in figure 7.12. For the example, five three-parameter
distributions are drawn and their abbreviations are shown in the figure legend. Two dis-
tributions, the Normal and the Rayleigh, are represented by points; these are shown in
the figure. Recalling that the Normal and Rayleigh are limiting conditions of the Rice, the
Normal represents the condition of very large signal-to-noise ratio and hence plots on the
left side of the diagram (solid square), whereas, the Rayleigh represents the condition of
zero signal-to-noise ratio and hence plots on the right side (solid diamond). The {τ3, τ4}
relation of the Rice finally is drawn as the thick line and connects to the Normal and
Rayleigh endpoints.

7–38
n <- 200; nsim <- 500 # no. samples and simulations
nu <- 5; alpha <- 3 # parameter values
RICEpar <- vec2par(c(nu,alpha), type="rice")
RICElmr <- lmomrice(RICEpar) # population L-moments
T3sim <- T4sim <- vector(mode="numeric", length=nsim)
#pdf("ricet3t4n200.pdf")
plotlmrdia(lmrdia(), xlim=c(0, 0.15), ylim=c(0, 0.2),

autolegend=TRUE, xleg=0.13, yleg=0.08, nouni=TRUE,
noexp=TRUE, nogum=TRUE, nolimits=TRUE)

for(i in 1:nsim) {
X <- rlmomco(n,RICEpar) # simulated values
lmr <- lmoms(X)$ratios # sample L-moments
points(lmr[3], lmr[4], cex=0.75, pch=16, col=8)
T3sim[i] <- lmr[3]; T4sim[i] <- lmr[4]

}
T3 <- .lmomcohash$RiceTable$TAU3 # Tau3 of the Rice
T4 <- .lmomcohash$RiceTable$TAU4 # Tau4 of the Rice
lines(T3,T4, lwd=3) # thick line of the Rice
points(mean(T3sim), mean(T4sim), cex=3, lwd=2)
points(RICElmr$ratios[3], RICElmr$ratios[4], cex=2, pch=16)
#dev.off()
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Figure 7.12. L-moment ratio diagram showing 500 simulations of n = 200 samples for a Rice
having ν = 5 and α = 3 from example 7–38. The large open circle reprsents the pair-wise
means of L-skew and L-kurtosis and large solid circle represents the population values.

The example continues by performing 500 simulations of n = 200 samples for a Rice
having ν = 5 and α = 3. The τ̂3 and τ̂4 of the sample are computed and plotted as the
small thin-lined open circles. The second-to-last line computes the mean values of the
τ̂3 and τ̂4 and plots them as the large solid circle, and the example ends by plotting the
population values of τ3 and τ4 that were computed by the lmomrice() function.

The L-moment ratio diagram in figure 7.12 shows that the numerically computed
{τ3, τ4} table in the .lmomcohash$RiceTable for signal-to-noise ratios spanning the
Rayleigh to Normal intersect and stop at these two distributions. The diagram also
shows that the Rice is less L-kurtotic for the range of τ3 than all the distributions except
the Generalized Pareto (the bottom curve of the diagram). Finally, the diagram shows
that the sample L-moments estimate mean values for {τ̂3, τ̂4} very close to those of the
population. J
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7.3 Summary

In this chapter, an overview of distributions supported by the lmom and lmomco pack-
ages is provided, but the emphasis of presentation obviously is on the lmomco package.
The overview considered both the one- and two-parameter distributions that are the sub-
ject of this chapter, but also three-parameter (Chapter 8) and four- and more-parameter
(Chapter 9) distributions were identified. The overview summarized the many functions
of the two packages that provide convenient interaction with distributions or functions
that otherwise generally support distributional analysis.

This chapter continued with presentation of the mathematics and examples for 9 two-
parameter distributions. (This presentation structure also is used in Chapters 8 and 9.)
The 38 examples in this chapter vary in size and scope, but collectively show how to esti-
mate parameters using the method of L-moments, compute parameters from L-moments,
and how to use the R functions supporting the PDF, CDF, and QDF of the distributions.
Further, several of the examples demonstrate numerical exploration of sampling bias and
other selected topics.

• The example for the Normal distribution investigates the sampling bias of the sample
standard deviation and compares the bias to that from an L-moment-based estimate
of the standard deviation. The biases reported in example 7–8 show that “on aver-
age” the estimation of σ using λ̂2

√
π (L-scale×

√
π) is less biased than σ̂ when the

parent is Normal.

• The examples for the Exponential distribution are comparatively simple as inspired
by the simplicity of the distribution. The examples collectively demonstrate the func-
tion types of lmomco used for parameter estimation, the recovery of L-moments from
distribution parameters, and both the CDF and QDF of the distribution.

• The examples for the Gamma distribution use sample L-moments from a previous
study. The examples show how a two-parameter distribution attains a different
L-skew τ3 than the underlying data. These differences are not specific to the Gamma,
but applicable to all two-parameter distributions and will become important in Chap-
ter 10.

• The examples for the Cauchy distribution, because its extreme-order statistics are
infinite, are used to demonstrate use of the TL-moments described in Section 6.4.

214



Texas Tech University,William H. Asquith, May 2011

• The examples for the Gumbel distribution used non-linear optimization for posterior
distribution fit and introduced the method of percentiles for parameter estimation.

• The examples for the Reverse Gumbel distribution explore the interrelations between
the Gumbel and Reverse Gumbel distributions through the Reflection Rule (see
page 36).

• The first example for the Kumaraswamy distribution shows the conversion of
L-moments to parameters and back again. The second example is used to depict the
{τ3, τ4}-parameter space for a wide range of the parameter values. The mapping
reproduces figures previously published in the literature.

• The examples for the Rayleigh distribution demonstrate parameter estimation for
both known and unknown location parameter and compare the fits of the distribu-
tion and the Gamma distribution to a common mode statistic.

• The examples for the Rice distribution are extensive and are used to show the relia-
bility of the lmomco algorithms as these appear, after extensive searching, the first to
implement L-moments for the distribution. The examples verify the numerical inte-
gration of the PDF to create the CDF by making comparisons to the definition using
the Marcum Q function. Another example also verifies the quality of QDF, which
is based on root solving the CDF by computation of the mean from simulation com-
pared to the theoretical mean based on the Laguerre polynomial. Another example
provides an extensive comparison of CDF shapes using a wide range of signal-to-
noise ratios from less than to more than unity, and the example shows convergence
to the Rayleigh distribution as the signal vanishes and shows convergence to the Nor-
mal distribution as the noise vanishes. Finally, an L-moment ratio diagram depicting
the {τ3, τ4}-parameter space of the Rice is drawn (see Chapter 10, which does not
encompass the Rice).
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Chapter 8

L-moments of Three-Parameter Univariate Distributions

In this chapter, I present continued discussion of distribution support by L-moments

in several R packages, but focus remains clearly on the lmomco package. The chapter

provides a distribution-by-distribution discussion of mathematics, features, parameters,

and L-moments of three-parameter distributions. In general, the mathematics of the

distributions are more complex than seen in the previous chapter. Readers possessing

considerable familiarity with statistics and R are likely to generally browse as needed

through the distributions. Other readers are encouraged to at least review this chapter

with the mindset that periodic return likely will be made. This chapter is central to

distributional analysis with L-moment statistics using R.

8.1 Introduction

The distributions considered in this chapter have three-parameters and thus are fit to the
mean, scale, and skewness (shape) of a sample distribution. As shown in Chapter 6 (see
example 6–18 ) and in examples in this chapter, most notably those associated with the
Pearson Type III distribution, L-moments can reliably estimate the skewness of a sam-
ple distribution through τ̂3. Because of the general reliability of τ̂3, the author suggests
that three-parameter distributions should receive considerable attention, and often these
might be preferred over lower-order distributions for magnitude and frequency analyses
for skewed data sets unless mitigating factors or compelling reasons exist.

Some notes about the source of material, in particular, the mathematics of the three-
parameter distributions, which are discussed in this chapter, are needed. Unless other-
wise stated, the material is heavily based on collective review of Evans and others (2000),
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Hosking (1996b), Hosking and Wallis (1997), and Stedinger and others (1993). Additional
citations are provided as needed on a distribution-specific basis.

Finally, the chapter concludeswith a summary of selected three-parameter distributions
with existing L-moment derivations that are not yet (as of May 2011) implemented within
the lmomco package. These additional distributions are associated with contemporary
research into L-moments, but mostly are presented to show a front line in the continued
development of the lmomco package.

8.2 Three-Parameter Distributions of the lmomco Package

8.2.1 Generalized Extreme Value Distribution

The Generalized Extreme Value distribution is a common distribution in applications
involving extreme value analysis of natural phenomena. The two-parameter Gumbel dis-
tribution in Section 7.2.5 is a special case of the Generalized Extreme Value for shape
parameter κ = 0. If k > 0, then the Generalized Extreme Value also is known as the
Fréchet or Extreme Value Type II distribution.

DISTRIBUTION FUNCTIONS

The distribution functions of the Generalized Extreme Value having parameters ξ (loca-
tion), α (scale, α > 0), and κ (shape, κ > −1) are

f(x) = α−1 exp[−(1− κ)Y − exp(−Y )] (8.1)

F (x) = exp[− exp(−Y )] (8.2)

where

Y =

−κ−1 log [1− κ(x− ξ)/α] if κ 6= 0

(x− ξ)/α if κ = 0
(8.3)

and

x(F ) =

ξ + α(1− [− log(F )]κ)/κ if κ 6= 0

ξ − α log[− log(F )] if κ = 0
(8.4)
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The ranges of the distribution are

−∞ < x ≤ ξ + α/κ if κ > 0 (8.5)

−∞ < x <∞ if κ = 0 (8.6)

ξ + α/κ ≤ x <∞ if κ < 0 (8.7)

The L-moments are

λ1 = ξ + α[1− Γ(1 + κ)]/κ (8.8)

λ2 = α(1− 2−κ)Γ(1 + κ)/κ (8.9)

τ3 = 2(1− 3−κ)/(1− 2−κ)− 3 (8.10)

τ4 =
5(1− 4−κ)− 10(1− 3−κ) + 6(1− 2−κ)

(1− 2−κ)
(8.11)

whereΓ(a) is the complete gamma function that is shown in eq. (8.85). No explicit solution
for the κ parameter in terms of the L-moments is possible and a hybrid of numerical
methods are used by lmomco. The other two parameters are

α =
λ2κ

(1− 2−κ)Γ(1 + κ)
(8.12)

ξ = λ1 − α[1− Γ(1 + κ)]/κ (8.13)

Using R Using R

The Generalized Extreme Value distribution is demonstrated in example 8–1 using
parameters from L-moments reported by (Hosking and Wallis, 1997, table 2.5). These are
listed in table 8.1. The parameters represent a site-specific characterization of the annual
maximum windspeed for the indicated location.

Table 8.1. L-moments of wind speed data reported by Hosking and Wallis (1997, table 2.5)

Location ξ α κ

(miles per hour) (miles per hour) (--)
Brownsville, Texas 39.8 6.26 −0.037

Corpus Christi, Texas 47.5 4.87 −.471

Port Arthur, Texas 48.5 7.15 −.059
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8–1
Br <- vec2par(c(39.8, 6.26, -0.037), type="gev")
Cr <- vec2par(c(47.5, 4.87, -0.471), type="gev")
Pr <- vec2par(c(48.5, 7.15, -0.059), type="gev")
F <- nonexceeds(); F <- F[F >= 0.75]
the.quantiles <- data.frame(F=F,

Brownsville=round( quagev(F,Br)),
CorpusChristi=round(quagev(F,Cr)),
PortArthur=round( quagev(F,Pr)))

print(the.quantiles)
F Brownsville CorpusChristi PortArthur

1 0.750 48 56 58
2 0.800 49 58 60
3 0.850 52 61 62
4 0.900 54 67 66
5 0.950 59 79 72
6 0.960 61 84 74
7 0.980 66 102 80
8 0.990 71 127 86
9 0.996 78 176 95
10 0.998 84 230 102

The quantiles show that for the 99th-percentile (F = 0.99) or 100-year recurrence
interval (prob2T(0.99) from lmomco) for Corpus Christi, Texas is estimated to be about
56 and 41 miles per hour more than for Brownsville and Port Arthur, Texas, respectively.
It is unknown whether these differences are reliable and show that Corpus Christi has
higher wind risk than the other two locales or whether the differences exist because of
sampling and uncertainties of the basic form of the parent distribution. Regional analysis
of these sample L-moments and those from other observation points on the Texas Gulf
Coast would be recommended. J

For another demonstration of the Generalized ExtremeValue distribution, a small appli-
cation is created to read-in a selected file of annual peak streamflowdata from theU.S. Geo-
logical Survey streamflow-gaging station 08167000 Guadalupe River near Comfort, Texas.
The data resides in file lmomco/inst/testdata/sta08167000.txt. For illustration,
the fit of the Generalized Extreme Value is inverted into equivalent T -year recurrence
intervals to judge the historical context of the data. For the example, an explicit assump-
tion is made that the Generalized Extreme Value is an appropriate distribution for the
problem.

The application begins with example 8–2 by prompting the user for the file name
using the file.choose() function. The contents of the selected file are read-in by the
read.table() function. The data reside in peak_va, and these are extracted and sorted
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into the variable Q. The example ends with the computation of the Weibull plotting posi-
tions.

8–2
file <- file.choose() # select the sta08167000.txt file
D <- read.table(file, header=TRUE, sep="\t") # open the file
Q <- sort(D$peak_va) # extract and sort peak data
Fs <- pp(Q) # compute Weibull plotting positions

These data also can be accessed by data(USGSsta08167000peaks), but for the
example, amore “manual” style is shownby the file specification using thefile.choose()
function, which launches a conventional file browser of the host operating system. The
text file sta08167000.txt is provided within the lmomco source distribution to support
the example.

The application continues in example 8–3 in which the L-moments of the data are
computed, the parameters of the Generalized Extreme Value distribution are computed
as GEVpar, and finally, the nonexceedance probabilities F are stored in variable GEV_Fs
by the CDF of the Generalized Extreme Value distribution or cdfgev().

8–3
lmr <- lmoms(Q) # compute L-moments
GEVpar <- pargev(lmr) # GEV parameter estimation
GEV_Fs <- cdfgev(Q,GEVpar) # inversion of the GEV

The application is completed in example 8–4 . This example handles the portable doc-
ument format (PDF) generation of the output in which two pages will be contained. The
gsub() function is used to strip out the trailing.txt of the file name and replacing itwith
.pdf. The two calls to plot() generate the first and second pages of the file pdffile()
(sta08167000.pdf for the example). The abline() function is used to draw a one-to-
one sloped line on the T -year recurrence interval plot. Readers should note the use of
the prob2T() function to convert nonexceedance probabilities into recurrence intervals.
Finally, the two plots are shown in figures 8.1 and 8.2.

8–4
pdffile <- gsub(".txt",".pdf",file) # make pdf file name
pdf(pdffile) # open pdf device

plot(prob2T(GEV_Fs),prob2T(Fs),
xlab = "GEV RECURRENCE INTERVAL, IN YEARS",
ylab = "ANNUAL RECURRENCE INTERVAL BY PLOTTING POS.")

abline(0,1) # one-to-one sloped line
plot(qnorm(Fs),quagev(Fs,GEVpar), type="l",

xlab = "STANDARD NORMAL DEVIATE",
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ylab = "STREAMFLOW, IN CUBIC FEET PER SECOND")
points(qnorm(Fs),Q)

dev.off() # close up the pdf device, now the pdf is viewable.
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Figure 8.1. Comparison of T-year recurrence interval of individual annual peak streamflow data
points estimated by CDF of Generalized Extreme Value distribution and those from Weibull
plotting positions for U.S. Geological Survey streamflow-gaging station 08167000 Guadalupe
River at Comfort, Texas from example 8–4 [first plot() call]. The line is one-to-one sloped.

J

8.2.2 Generalized Logistic Distribution

The Generalized Logistic distribution likely is a less commonly used distribution than
the Generalized Extreme Value. The distribution has three-parameters and thus is fit to
the mean, scale, and shape of a data set. As will be seen the Generalized Logistic is more
kurtotic than the other three-parameter distributions described herein. As reported by
Hosking and Wallis (1997, p. 197), the Generalized Logistic is a reparametrization (gener-
alization) of the log-logistic distribution. Alkasasbeh and Raqab (2008) provide an exten-
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Figure 8.2. Comparison of empirical distribution of annual peak streamflow data (open cir-
cles) and fitted Generalized Extreme Value distribution (solid line) for U.S. Geological Survey
streamflow-gaging station 08167000 Guadalupe River at Comfort, Texas from example 8–4
[second plot() call]

sive study of five parameter estimation methods for the distribution; the methods include
maximum likelihood, method of moments, method of percentiles, least and weighted-
least squares, and method of L-moments.

DISTRIBUTION FUNCTIONS

The distribution functions of the Generalized Logistic having parameters ξ (location),
α (scale, α > 0), and κ (shape,−1 < k < 1) are

f(x) =
α−1 exp[−(1− κ)Y ]

[1 + exp(−Y )]2
(8.14)

F (x) = 1/[1 + exp(−Y )] (8.15)

where
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Y =

−κ−1 log[1− κ(x− ξ)/α] if κ 6= 0

(x− ξ)/α if κ = 0
(8.16)

and

x(F ) =

ξ + α(1− [(1− F )/F ]κ)/κ if κ 6= 0

ξ − α log[(1− F )/F ] if κ = 0
(8.17)

The ranges of the distribution are

−∞ < x ≤ ξ + α/κ if κ > 0 (8.18)

−∞ < x <∞ if κ = 0 (8.19)

ξ + α/κ ≤ x <∞ if κ < 0 (8.20)

The L-moments are

λ1 = ξ + α[1/κ− π/ sin(κπ)] (8.21)

λ2 = ακπ/ sin(κπ) (8.22)

τ3 = −κ (8.23)

τ4 = (1 + 5κ2)/6 (8.24)

and the relation between τ3 and τ4 is

τ4 =
1 + 5(τ3)

2

6
(8.25)

The parameters are

κ = −τ3 (8.26)

α =
λ2 sin(κπ)

κπ
(8.27)

ξ = −λ1 − α
(

1

κ
− π

sin(κπ)

)
(8.28)

Using R Using R

Asquith (1998) in a large study of the L-moments and parameters of Generalized Logis-
tic and Generalized Extreme Value distributions for annual maximum rainfall in Texas
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concludes that the Generalized Logistic distribution is appropriate for rainfall durations
less than 24-hours and the Generalized Extreme Value distribution was appropriate for
larger durations. Parameters of the Generalized Logistic distribution of 1-hour annual
maximum rainfall for Travis County, Texas are listed in table 8.2.

Table 8.2. Parameters and corresponding L-moments of Generalized Logistic distribution for
1-hour annual maximum rainfall for Travis County, Texas derived from Asquith (1998)

ξ α κ λ1 λ2 τ3 τ4
(inches) (inches) (--) (inches) (inches) (--) (--)
1.7 0.35 −0.20 1.82 0.374 0.200 0.200

The CDF and QDF of the fitted Generalized Logistic distribution are produced with
example 8–5 and are shown in figure 8.3. The variable PARglo stores the lmomco param-
eter list (see page 163 and ex. 7–1 ) for the distribution. The quaglo() and cdfglo()

provide the QDF and CDF of the distribution, respectively.

8–5
PARglo <- vec2par(c(1.7,0.35,-0.20), type="glo")
F <- nonexceeds() # list of nonexceedance probs.
Q <- quaglo(F,PARglo) # will need Q in cdf generation
#pdf("glo1.pdf")
layout(matrix(1:2, nrow=1))
plot(Q,cdfglo(Q,PARglo), ylab="F", type="l")
plot(F,Q, type="l")
#dev.off()

J

The corresponding L-moments of the Generalized Logistic parameters are listed in
table 8.2 and are computed in example 8–6 . The example uses the lmomglo() and
par2lmom() functions to the same effect. In each case, the lmorph() function is used to
convert the returned L-moments to amore succinct data structure—the lmomco L-moment
list (see page 127 and exs. 6–7 – 6–9 ). The L-moments are listed in table 8.2. It is a coinci-
dence for this particular example that τ3 and τ4 are effectively equal.

8–6
PARglo <- vec2par(c(1.7,0.35,-0.20), type="glo")
the.Lmoms.shown <- lmorph(lmomglo( PARglo))
the.Lmoms.notshown <- lmorph(par2lmom(PARglo))
str(the.Lmoms.shown)
List of 6
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Figure 8.3. CDF and QDF of Generalized Logistic distribution fit to L-moments in table 8.2 from
example 8–5

$ lambdas : num [1:4] 1.8207 0.3741 0.0748 0.0748
$ ratios : num [1:4] NA 0.205 0.200 0.200
$ trim : num 0
$ leftrim : NULL
$ rightrim: NULL
$ source : chr "lmorph"

J

The Generalized Logistic distribution is more kurtotic—that is, has a larger τ glo4 for
a given τ3—than the τ glo4 of the Generalized Extreme Value distribution. The relations
between τ4 for these two distributions and many others are discussed further in Chap-
ter 10.

Example 8–7 , for a symmetrical distribution (τ3 = 0), demonstrates the effect of larger
τ
glo
4 on the far tails of each distribution. A symmetrical distribution provides a means
to explicitly consider the interpretations of kurtosis—L-kurtosis τ4 in the context here.
The L-moments are set by the vec2lmom() function, and distributions will be fit to
these L-moments. The two fitted distributions set into PARgev and PARglo using the
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pargev() and the parglo() functions. The lmomgev() and lmomglo() functions
compute the respective distribution L-moments. As the example shows, τ glo4 (T4.glo
= 0.167) is larger than τ gev4 (T4.gev = 0.107).

8–7
lmr <- vec2lmom(c(2000,500,0))
PARgev <- pargev(lmr); PARglo <- parglo(lmr)
LMRgev <- lmomgev(PARgev); LMRglo <- lmomglo(PARglo)
T4.gev <- round(LMRgev$TAU4,3); T4.glo <- round(LMRglo$TAU4,3)
cat(c( "T4.gev=",T4.gev,

" T4.glo=",T4.glo,"\n"))
T4.gev= 0.107 T4.glo= 0.167

J

Continuing from example 8–7 , the code in example 8–8 produces the comparison
shown in figure 8.4. The thin line lwd=1 in the figure is the Generalized Extreme Value
and the thick line lwd=3 is the Generalized Logistic. Thus, although the distributions
mathematically differ, the distributions are fit to the same L-moments. For the example,
the two distributions generally have similar (near identical) quantiles in the central part
of the range of F values.

8–8
F <- nonexceeds() # vector of selected nonexceedance

probabilities
#pdf("glo2.pdf")
plot(F,quagev(F,PARgev), type="l", lwd=1,

xlab="Nonexceedance Probability", ylab="Quantile")
lines(F,quaglo(F,PARglo), lwd=3)
legend(0.2, 4000, c("GEV","GLO"), lwd=c(1,3), box.lty=0, bty="n")
#dev.off()

J

Finally, for the distribution parameters considered in example 8–7 and the F val-
ues, comparison of the PDFs of the two fitted distributions is made using example 8–9 .
The example uses the quaglo() and quagev() functions to compute distribution-
specific ranges x.glo and x.gev. These ranges in turn are used with the PDF functions
pdfglo() and pdfgev(). The PDFs are shown in figure 8.5.
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Figure 8.4. Comparison of QDF for Generalized Extreme Value and Generalized Logistic distribu-
tions fit to L-moments of λ1 = 2000, λ2 = 500, and τ3 = 0 from example 8–8

8–9
x.glo <- quaglo(F,PARglo) # arguments F, PARglo, and PARgev
x.gev <- quagev(F,PARgev) # derived from previous example
#pdf("glo3.pdf")
plot(x.glo,pdfglo(x.glo,PARglo), type="l",

xlab="x", ylab="f(x)", lwd=3)
lines(x.gev,pdfgev(x.gev,PARgev), lwd=1)
legend(-500, 0.0005, c("GEV","GLO"),

lwd=c(1,3), box.lty=0, bty="n")
#dev.off()

J

8.2.3 Generalized Normal Distribution

The Generalized Normal is a Normal distribution whose generalization accommodates
non-zero skewness and retains the Normal as a special case. The Generalized Normal is
lauded as a replacement for the log-Normal distribution by avoiding the introduction of
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Figure 8.5. Comparison of PDF for Generalized Extreme Value and Generalized Logistic distribu-
tions fit to L-moments of λ1 = 2000, λ2 = 500, and τ3 = 0 from example 8–9

logarithmic transformation of the data prior to computation of sample statistics. Loga-
rithmic transformation can be problematic for circumstances involving negative or zero
values. Further, logarithmic transformation can accentuate the influence of small values
(low outliers) on sample statistics while the influence of large values is decreased (see Sec-
tion 4.4). Comparisons between the Generalized Normal and log-Normal distributions
are made in this section.

DISTRIBUTION FUNCTIONS

The distribution functions of the Generalized Normal having parameters ξ (location),
α (scale, α > 0), and κ (shape) are

f(x) =
exp(κY − Y 2/2)

α
√

2π
(8.29)

F (x) = Φ(Y ) (8.30)

x(F ) has no explicit analytical form
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where Φ(Y ) is the CDF of the standard Normal distribution and Y is

Y =

−κ−1 log[1− κ(x− ξ)/α] if κ 6= 0

(x− ξ)/α if κ = 0
(8.31)

The ranges of the distribution are

−∞ < x ≤ ξ + α/κ if κ > 0 (8.32)

−∞ < x <∞ if κ = 0 (8.33)

ξ + α/κ ≤ x <∞ if κ < 0 (8.34)

The first two L-moments are

λ1 = ξ +
α

κ
[1− exp(κ2/2)] (8.35)

λ2 =
α

κ
[exp(κ2/2)][1− 2Φ(−κ/

√
2)] (8.36)

There are no simple expressions for τ3, τ4, and τ5. There are no simple expressions for
the parameters in terms of the L-moments. Numerical methods are required.

Emphasis is needed that logarithmic transformation of the data prior to fitting of the
Generalized Normal distribution is not required. Whereas, logarithmic transformation
is needed for the log-Normal distribution having parameters ξ, µlog, and σlog. A closely
related distribution to the Generalized Normal is the 3-parameter log-Normal distribu-
tion (log-Normal3). In particular, the log-Normal3 distribution for x > 0 has the same
distribution functions with the substitution of Y in eq. (8.31) for the following

Y =
log(x− ζ)− µlog

σlog
(8.37)

where ζ is the lower bounds (real space) for which ζ < λ1 − λ2, µlog is the mean in
log-space, and σlog is the standard deviation in log-space for which σlog > 0.

The parameter equalities between the Generalized Normal and log-Normal3, by letting
η = exp(µlog), are
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ξ = ζ + η (8.38)

α = ησlog (8.39)

κ = −σlog (8.40)

from which the L-moments can be computed by algorithms for the Generalized Normal.

The parameters of the log-Normal3 in terms of the parameters of the Generalized Normal,
by letting η = λ1 − ζ , are

σlog =
√

2× Φ(−1)(0.5[1 + λ2/η]) (8.41)

µlog = log(η)− 0.5σ2
log (8.42)

for a known ζ and, by letting η = α/σlog, are

σlog = −κ (8.43)

µlog = log(η) (8.44)

ζ = ξ − η (8.45)

for an unknown ζ . Readers should note that natural logarithms are represented by the
log() function in the prior typeset mathematics, and this mimics the syntax of natural
logarithms log() in R. For an example of a study using the log-Normal3 and within in
the context of L-moments, Benson (1993) concludes that the log-Normal3 and General-
ized Extreme Value distributions are appropriate for modeling hydraulic conductivity of
compacted soil liners (a common landfill liner and cover).

Using R Using R

The Generalized Normal accommodates skewness. The generalized nature of the dis-
tribution is demonstrated by plotting a PDF for each of three ensembles of L-moments.
Example 8–10 sets the L-moments in lmr1, lmr2, and lmr3 by the vec2lmom() func-
tion. The parameters for each are set in PAR1, PAR2, and PAR3 by the lmom2par() and
pargno() functions. The two functions are purposefully used to show two alternative
methods in lmomco for parameter estimation. The lmom2par() dispatches to pargno()
based on the type argument. The layout() function is used to set up three stacked
plots. The high-level function check.pdf() is used to succinctly plot the PDF of each
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distribution. (The function was created as a tool to verify that PDF functions properly
integrate to unity—see the documentation.) The three PDFs are shown in figure 8.6.

8–10
lmr1 <- vec2lmom(c(0, 1, -0.4)) # set three suites
lmr2 <- vec2lmom(c(0, 1, 0.0)) # of L-moments
lmr3 <- vec2lmom(c(0, 1, 0.2)) # for this example
PAR1 <- lmom2par(lmr1, type="gno") # not parallel style, but
PAR2 <- pargno(lmr2) # different dialect to perform
PAR3 <- pargno(lmr3) # parameter estimation
#pdf("gnopdf.pdf")
layout(matrix(1:3, ncol=1))
check.pdf(pdfgno,PAR1, plot=TRUE)
check.pdf(pdfgno,PAR2, plot=TRUE)
check.pdf(pdfgno,PAR3, plot=TRUE)
#dev.off()

J

Returning to the distribution of annual peak streamflow for U.S. Geological Survey
streamflow-gaging station 05405000 Baraboo River near Baraboo, Wisconsin considered
in example 2–32 on page 57 and associated discussion, example 8–11 loads the data
and prepares the annual peak streamflow data for plotting by use of functions sort()
and pp(). The sample L-moments are computed by lmoms() and are listed in the first
three columns in table 8.3. The product moment values of the logarithms are shown in
the last two columns and are repeated from the output of example 2–32 . The Generalized
Normal parameters are computed by pargno() into GNOpar and are GNO(13811, 19049,
−1.0710).

8–11
#pdf("gnolognor.pdf")
data(USGSsta05405000peaks) # from lmomco package
attach(USGSsta05405000peaks)
Q <- sort(peak_va) # sort the annual peak streamflow values
PP <- pp(Q) # compute Weibull plotting positions
lmr <- lmoms(Q); GNOpar <- pargno(lmr)
lmr.lg <- lmoms(log10(Q)); NORpar <- parnor(lmr.lg)
plot(qnorm(PP),Q, xlab="STANDARD NORMAL DEVIATE",

ylab="STREAMFLOW, IN FT^3/S")
lines(qnorm(PP), quagno(PP,GNOpar)) # plot gno as solid line
lines(qnorm(PP), 10^quanor(PP,NORpar),

lty=2) # plot lognormal distribution as dashed line
#dev.off()

These parameters can be reverted to L-moment vectors by a combination of the
lmomgno() and lmorph() functions as shown in example 8–12 .
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Figure 8.6. Probability density functions for three selected Generalized Normal distributions.

8–12
str(lmorph(lmomgno(GNOpar)))
List of 6
$ lambdas : num [1:5] 3134.6 893.9 159.7 132.1 52.9
$ ratios : num [1:5] NA 0.2852 0.1786 0.1477 0.0592
$ trim : num 0
$ leftrim : NULL
$ rightrim: NULL
$ source : chr "lmorph"

Continuing with the primary demonstration, example 8–11 also computes the sample
L-moments of log10-transformeddata andfits aNormal distribution usingparnor(). The
empirical distribution and the fitted Generalized Normal and log-Normal distributions
are then plotted, and the results are shown in figure 8.7.
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The plot in figure 8.7 shows that the Generalized Normal provides a preferable fit—
the distribution is more reliably fit by the method of L-moments and has avoided the
use of logarithms. Using L-moments, the analyst can work in the natural units of the
data. By better representing the first three sample L-moments, the Generalized Normal is
preferable to the log-Normal for the current data. Readers might compare figure 2.11 on
page 59 to figure 8.7, and note that the log-Normal distribution is represented by a dashed
line in each of the two figures. J

Table 8.3. L-moments of annual peak streamflow data for 05405000 Baraboo River near Baraboo,
Wisconsin and parameters for fitted Generalized Normal distribution
λ1 λ2 τ3 ξ α κ µ(log10) σ(log10)

(ft3/s) (ft3/s) (--) (ft3/s) (ft3/s) (--) (ft3/s) (ft3/s)
3135 894 0.1786 2849 1497 −0.3683 3.438 0.2356
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Figure 8.7. Empirical distribution of annual peak streamflow data for U.S. Geological Survey
streamflow-gaging station 05405000 Baraboo River near Baraboo, Wisconsin and General-
ized Normal (solid line) and log-Normal (dashed line) distributions fit by method of L-moments
from example 8–11
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An exploration of the sampling properties and general applicability of the Generalized
Normal in the context that the parent distribution is log-Normal is made using exam-
ple 8–13 . The parent log-Normal distribution is defined using the productmoments listed
in table 8.3. A sample size n = 70 is chosen. The quantile of interest has F = 0.99, which
meansX0.99 = 9,680 (true.Quantile).

8–13
mu <- 3.438; sig <- 0.2356
n <- 70; F <- 0.99; nsam <- 10000
NORpar <- vec2par(c(mu,sig), type="nor")
true.Quantile <- 10^(quanor(F,NORpar))
eps.bylognor <- vector(mode = "numeric")
eps.bygno <- eps.bylognor
for(i in seq(1:nsam)) {

logQ <- rlmomco(n,NORpar)

smu <- mean(logQ); ssig <- sd(logQ)
sNORpar <- vec2par(c(smu,ssig), type="nor")

lmr <- lmoms(10^logQ)
sGNOpar <- pargno(lmr)

eps.bylognor[i] <- 10^(quanor(F,sNORpar)) - true.Quantile
eps.bygno[i] <- quagno(F,sGNOpar) - true.Quantile

}

Next, through the for() loop, the nsam differences between the two estimated X̂0.99

andX0.99 are computed. The summary statistics of the differences then are computed in
example 8–14 .

8–14
summary(eps.bylognor) # errors by log-Normal

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3816.00 -819.40 -61.61 31.98 789.80 5588.00

summary(eps.bygno) # errors by Gen. Normal
Min. 1st Qu. Median Mean 3rd Qu. Max.

-4509.00 -1097.00 -123.00 54.26 991.60 10270.00

# Relative efficiency
RE <- sum((eps.bylognor - mean(eps.bylognor))^2) /

sum((eps.bygno - mean(eps.bygno))^2)

print( round(RE, digits=3) )
[1] 0.549
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The summary statistics in example 8–14 show that the product moments, through the
assumption that the parent is log-Normal, provide slightly less biased estimates ofX0.99

than the L-moments through theGeneralizedNormal distribution. The statistics also show
that the spread or variability of the X̂0.99 estimates from the Generalized Normal is larger.
The relative efficiency is RE(lognor, gno) ≈ 0.549. This value shows that the product
moments can outperform the L-moments, but do so here because the simulated parent
is log-Normal (G of the logarithms is zero), simulated from log-space, and the estimated
distribution also is log-Normal. J

The Generalized Normal and log-Normal3 distributions are closely related. In exam-
ple 8–15 , a Generalized Normal is fit to some L-moments, and the QDF is plotted in
figure 8.8.

8–15
lmr <- vec2lmom(c(1000,300,0.2))
F <- seq(0,1, by=0.05) # 5-percent intervals
#pdf("ln3.pdf")
plot(F,qlmomco(F,pargno(lmr)), ylim=c(-600,2500),

type="l", lwd=2, lty=2) # dashed line
lines(F,qlmomco(F,parln3(lmr, zeta=NULL)), col=2) # red line
lines(F,qlmomco(F,parln3(lmr, zeta=-600)))
lines(F,qlmomco(F,parln3(lmr, zeta=0 )))
lines(F,qlmomco(F,parln3(lmr, zeta=200 )))
lines(F,qlmomco(F,parln3(lmr, zeta=400 )))
#dev.off()

The figure shows open circles for the Generalized Normal values by 5-percent increments.
Additionally, the lines depicted various solutions for the log-Normal3 distribution, in
which the unknown ζ-parameter solution is plotted in red. In the figure, the red line (log-
Normal3) plots along the dashed line (Generalized Normal)—the two distributions are
the same. J

8.2.4 Generalized Pareto Distribution

The Generalized Pareto distribution (Hosking and Wallis, 1987) likely is a less commonly
used distribution than the Generalized Extreme Value in distributional analysis of earth-
systems data such as floods, droughts, and rainfall. The Generalized Pareto distribution
is more common in financial studies as a historical model of income distribution. The
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Figure 8.8. Quantile function by 5-percent intervals for a Generalized Normal (dashed line) dis-
tribution and several log-Normal3 fits using selected lower limits and fit (red line) treating lower
limit as unknown from example 8–15

Generalized Pareto generally is less kurtotic (τ4) than the other three-parameter distribu-
tions described here and much less so for negatively skewed or left-tail heavy data (see
Chapter 10).

TheGeneralized Pareto distribution is especially useful as a distribution for pedagogical
purposes: (1) it is a three-parameter distribution that supports both known and unknown
lower limits, (2) the distribution functions are readily computed and theoretical integra-
tions by eqs. (3.4) and (6.1) are straightforward, and (3) the L-moments in terms of the
parameters and parameters in terms of L-moments are readily computed. These factors
make the Generalized Pareto attractive for educational settings including examination
purposes.

DISTRIBUTION FUNCTIONS

The distribution functions of the Generalized Pareto having parameters ξ (location),
α (scale, α > 0), and κ (shape, κ > −1) are
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f(x) = α−1 exp[−(1− κ)Y ] (8.46)

F (x) = 1− exp(−Y ) (8.47)

where

Y =

−κ−1 log[1− κ(x− ξ)/α] if κ 6= 0

(x− ξ)/α if κ = 0
(8.48)

and

x(F ) =

ξ + α[1− (1− F )κ]/κ if κ 6= 0

ξ − α log(1− F ) if κ = 0
(8.49)

The ranges of the distribution are

ξ < x ≤ ξ + α/κ if κ > 0 (8.50)

ξ ≤ x <∞ if κ ≤ 0 (8.51)

The L-moments are

λ1 = ξ + α/(1 + κ) (8.52)

λ2 = α/[(1 + κ)(2 + κ)] (8.53)

τ3 = (1− κ)/(3 + κ) (8.54)

τ4 = (1− κ)(2− κ)/[(3 + κ)(4 + κ)] (8.55)

The parameters for a known ξ are

κ = [(λ1 − ξ)/λ2]− 2 (8.56)

α = (1 + κ)(λ1 − ξ) (8.57)

and the relation between τ3 and τ4 is

τ4 =
τ3(1 + 5τ3)

5 + τ3
(8.58)

and the parameters for an unknown ξ are
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κ = (1− 3τ3)/(1 + τ3) (8.59)

α = (1 + κ)(2 + κ)λ2 (8.60)

ξ = λ1 − (2 + κ)λ2 (8.61)

The Generalized Pareto distribution is a true three-parameter distribution and is fit to
the L-momentsλ1,λ2, and τ3 when the lower limit ξ is unknown, butwhen ξ is known, the
Generalized Pareto becomes a two-parameter distribution, and the distribution is not fit
to the skewness of the data. If κ = 0, the Exponential distribution results, and if κ = 1, the
Uniform distribution results. The Generalized Pareto can be formulated as quite similar
to the Generalized Lambda (see Section 9.2.2) when κgld = 0.

Using R Using R

Suppose a Generalized Pareto is specified as GPA(−6000, 400, −0.5), the first four
L-moments can be manually computed. Using analytical expressions (eqs. (8.52) – (8.55))
for the L-moments in terms of the parameters that follow

λ1 = −6000 + 400/(1− 0.5) = −5200 (8.62)

λ2 = 400/[(1− 0.5)(2− 0.5)] = 533 (8.63)

τ3 = (1 + 0.5)/(3− 0.5) = 0.600 (8.64)

τ4 = (1 + 0.5)(2 + 0.5)/[(3− 0.5)(4− 0.5)] = 0.429 (8.65)

a double check of the arithmetic with the par2lmom() and lmomgpa() functions is
now made in example 8–16 . In the example, the lmorph() function is used for format
conversion to show the two lmomco L-moment lists (see page 127 and exs. 6–7 – 6–9 ).

8–16
GPApar <- vec2par(c(-6000, 400, -0.5), type="gpa")
lmomGPA <- lmomgpa(GPApar)

str(lmomGPA)
List of 10
$ L1 : num -5200
$ L2 : num 533
$ TAU3 : num 0.6
$ TAU4 : num 0.429
$ TAU5 : num 0.333
$ LCV : num -0.103
$ L3 : num 320
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$ L4 : num 229
$ L5 : num 178
$ source: chr "lmomgpa"

str(lmorph(lmomGPA))
List of 6
$ lambdas : num [1:5] -5200 533 320 229 178
$ ratios : num [1:5] NA -0.103 0.600 0.429 0.333
$ trim : num 0
$ leftrim : NULL
$ rightrim: NULL
$ source : chr "lmorph"

J

8.2.5 Right-Censored Generalized Pareto Distribution

The Right-Censored Generalized Pareto distribution is a right-censored version of the
Generalized Pareto distribution having parameters ξ (location), α (scale, α > 0), and
κ (shape, κ > −1).

DISTRIBUTION FUNCTIONS

The distribution functions of the Right-Censored Generalized Pareto are the same as
those for the Generalized Pareto so reference to Section 8.2.4 is made. The relations by
Hosking (1995) between the parameters and the B-type L-moments (through the B-type
probability-weighted moments of Section 12.2) of the data under right-tail censoring are

λB1 = ξ + αm1 (8.66)

λB2 = α(m1 − m2) (8.67)

λB3 = α(m1 − 3m2 + 2m3) (8.68)

λB4 = α(m1 − 6m2 + 10m3 − 5m4) (8.69)

λB5 = α(m1 − 10m2 + 30m3 − 35m4 + 14m5) (8.70)

wheremr = [1−(1−ζ)r+κ]/(r+κ) and ζ is the right-tail censor fraction or the probability
Pr[] that x is less than the quantile at ζ nonexceedance probability: (Pr[x < X(ζ)]).
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Using R Using R

The Right-Censored Generalized Pareto distribution is demonstrated in example 12–1

by an application beginning on page 342, and readers are directed there for details. J

8.2.6 Trimmed Generalized Pareto Distribution

Elamir and Seheult (2003) describe a t1 = t2 = 1 symmetrically trimmed version of the
Generalized Pareto distribution. In the lmomco package, this distribution is the Trimmed
Generalized Pareto distribution. Hosking (2007b) evaluates asymmetrically trimmed ver-
sions (t2 = 0, 1, 2) of the Generalized Pareto—these are not considered here. The parame-
ters are estimated by the TL-moments (see Section 6.4), but the distribution functions rely
on those for the Generalized Pareto in Section 8.2.4.

DISTRIBUTION FUNCTIONS

The distribution functions of a t = 1 symmetrically-trimmed Trimmed Generalized
Pareto having parameters ξ (location), α (scale, α > 0), and κ (shape, κ > 1) are defined
as for the Generalized Pareto on page 236.

The TL-moments of the Generalized Pareto (Trimmed Generalized Pareto) with sym-
metrical trimming of smallest and largest values (λ(1)

r or τ (1)r ) are

λ
(1)
1 = ξ +

α(κ+ 5)

(κ+ 3)(κ+ 2)
(8.71)

λ
(1)
2 =

6α

(κ+ 4)(κ+ 3)(κ+ 2)
(8.72)

τ
(1)
3 =

10(1− κ)

9 (κ+ 5)
(8.73)

τ
(1)
4 =

5(κ− 1)(κ− 2)

4(κ+ 6)(κ+ 5)
(8.74)
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The parameters are

κ =
10− 45τ

(1)
3

9τ
(1)
3 + 10

(8.75)

α = λ
(1)
2 (κ+ 2)(κ+ 3)(κ+ 4)/6 (8.76)

ξ = λ
(1)
1 −

α(κ+ 5)

(κ+ 2)(κ+ 3)
(8.77)

Using R Using R

An example of the Trimmed Generalized Pareto distribution in the context of com-
puting theoretical t = 1 TL-moments using the theoTLmoms() function is provided in
example 6–15 on page 142. The results of that example are compared to analytical results
computed by the lmomTLgpa() function, which implements eqs. (8.71) – (8.74) for the
same TLGPA(10, 5, 0.5) in example 8–17 . Comparison between the two examples shows
that λ(1)1 = 13.14, λ(1)2 = 0.762, τ (1)3 = 0.101, and τ (1)4 = 0.0262 for a TLGPA(10, 5, 0.5).

8–17
PARgpa <- vec2par(c(10,5,0.5), type="gpa")
lmr <- lmomTLgpa(PARgpa); print(lmr)
$lambdas
[1] 13.14285714 0.76190476 0.07696008 0.01998002
$ratios
[1] 0.00000000 0.05797101 0.10101010 0.02622378
$trim
[1] 1
$source
[1] "lmomTLgpa"

J

The robustness of the TL-moments in the presence of some contrived contamination
by outliers to a sample is now explored. In example 8–18 , a GPA(1000, 1000, −0.5) is
specified and a sample of size n = 30 is chosen for evaluation. The evaluation will use
1,000 simulations. Each simulated sample is contaminated by shifting the decimal of
the largest value to the left one place. The output of a simulation run with focus on the
99th percentile F = 0.99 is shown and indicates that both techniques underestimate
considerably in the right tail of the distribution. However, the bias using the TL-moments
is about half compared to the L-moments [(−4972)/(−8603) = 0.58].
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8–18
PARgpa <- vec2par(c(1000,1000,-0.5), type="gpa")
e1 <- e2 <- vector(mode = "numeric")
n <- 30; nsim <- 1000
F <- 0.99
QF <- quagpa(F,PARgpa)
for(i in seq(1,nsim)) {

Q <- sort(rlmomco(n,PARgpa)) # generate random GPA values
# contaminate the sample, shift largest by order of magnitude
Q[n] <- Q[n]/10 # shift decimal to left of largest value
lmr <- TLmoms(Q) # technically same as lmr <- lmoms(Q)

TLmr <- TLmoms(Q, trim=1) # TL-moments for trim = 1

# Parameter estimation via method of L-moments
PARgpa1 <- pargpa(lmr)
PARgpa2 <- parTLgpa(TLmr)

# Now estimate the 99th percentile
QF1 <- quagpa(F,PARgpa1)
QF2 <- quagpa(F,PARgpa2)

e1[i] <- QF1 - QF
e2[i] <- QF2 - QF # storing the results

}
b1 <- round(mean(e1)); b2 <- round(mean(e2))
cat(c( "Bias using L-moments=",b1,

" Bias using TL-moments=",b2,"\n"))
Bias using L-moments= -8603 Bias using TL-moments= -4972

The robustness of the TL-moments is shown. Unfortunately in practice, knowledge
of the type and degree of contamination by outliers that a sample might be exposed to
mostly is unknown. In circumstances in which decimal shifts are likely, including situa-
tions involving transcription or even optical character recognition errors, the TL-moments
might offer protection against such errors in the data values or protection against either
low or high outliers (or both). J

8.2.7 Pearson Type III Distribution

The Pearson Type III distribution is a three-parameter distribution that is a widely used
probability distribution in the hydrologic sciences. It is a particularly interesting distri-
bution for the purposes of this dissertation because the product moments are explicit
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parameters. This fact greatly simplifies comparisons between parameter estimates from
product moments and L-moments.

DISTRIBUTION FUNCTIONS

The distribution functions of the Pearson Type III having parameters µ (mean, loca-
tion), σ (standard deviation, scale), and γ (skew, shape), but expressed with alternative
parameters ξ (location), β (scale, β > 0), and α (shape, α > 0) are

f(x) =


β−α(x− ξ)α−1 exp(−Y1)/Γ(α) if γ > 0

β−α(ξ − x)α−1 exp(−Y2)/Γ(α) if γ < 0

ϕ((x− µ)/σ) if γ = 0

(8.78)

F (x) =


G(α, Y1)/Γ(α) if γ > 0

1−G(α, Y2)/Γ(α) if γ < 0

Φ((x− µ)/σ) if γ = 0

(8.79)

x(F ) has no explicit analytical form

where
Y1 = (x− ξ)/β and Y2 = (ξ − x)/β (8.80)

and whereG(a, b) is the incomplete gamma function, Γ(a) is the complete gamma func-
tion, ϕ(a) is the PDF of the Normal distribution, Φ(a) is the CDF of the Normal distribu-
tion. The relations between the product moments and the three alternative parameters for
γ 6= 0 are

α = 4/γ 2 (8.81)

β = σ|γ|/2 (8.82)

ξ = µ− 2σ/γ (8.83)

The incomplete gamma function G(a, b) is

G(a, b) =

∫ b

0

t(a−1) exp(−t) dt (8.84)
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and the complete gamma function Γ(a) is

Γ(a) =

∫ ∞
0

t(a−1) exp(−t) dt (8.85)

The particular parameterization of the Pearson Type III shown is useful. For hydro-
logic data, more common situations of positive skewness (right-tail heavy), less common
negative skewness (left-tail heavy), and zero skewness (Normal distribution) are accom-
modated. The ranges of the distribution are

ξ ≤ x <∞ if γ > 0 (8.86)

−∞ < x <∞ if γ = 0 (Normal distribution) (8.87)

−∞ < x ≤ ξ if γ < 0 (8.88)

The L-moments are

λ1 = ξ + αβ (8.89)

λ2 = π−1/2β Γ(α + 1/2)/Γ(α), and (8.90)

τ3 = 6 I1/3(α, 2α)− 3 (8.91)

where Ix(p, q) denotes the incomplete Beta function ratio, regularized incomplete Beta
function, regularized Beta function for short

Ix(p, q) =
Γ(p+ q)

Γ(p) Γ(q)

∫ x

0

tp−1(1− t)q−1dt (8.92)

which also is the same as the CDF of the Beta distribution B(x, p, q).

The parameters have quasi-analytical solutions (Hosking and Wallis, 1997, p. 202). The
following approximations have a relative accuracy better than 5× 10−5 for all values of
α. If 0 < |τ3| < 1/3, let z = 3πτ 23 and use minimax approximations by Hosking (1996b)
for α

α ≈ 1 + 0.2906z

z + 0.1882z2 + 0.0442z3
(8.93)

if 1/3 ≤ |τ3| < 1, let z = 1− |τ3| and use

α ≈ 0.36067z − 0.59567z2 + 0.25361z3

1− 2.78862z + 2.56096z2 − 0.77045z3
(8.94)
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The parameters in terms of α and the L-moments are

γ = sign(τ3)
2√
α

(8.95)

σ =
λ2Γ(α)

√
απ

Γ(α + 0.5)
(8.96)

µ = λ1 (8.97)

Finally, the log-Pearson Type III distribution is a Pearson Type III fit to the logarithms of
a random variable.

Using R Using R

Daily mean streamflow for U.S. Geological Survey streamflow-gaging station 06766000
Platte River at Brady, Nebraska is available in the USGSsta06766000dvs data for the
period from 03/01/1939 to 09/30/1991. The flow-duration curve is a plot of the sorted
daily mean streamflow values plotting against nonexceedance probability computed by
plotting positions. Example 8–19 loads in these data and plots the time series of stream-
flow as measured daily.

8–19
data(USGSsta06766000dvs) # from lmomco package
flow <- USGSsta06766000dvs$X01_00060_00003
#pdf("fdc1pe3.pdf")
plot(flow, type="l", xlab="DAY", ylab="FLOW, IN FT^3/S")
#dev.off()

Subsequently, example 8–20 fits the Pearson Type III distribution by the method of
L-moments. The fitted distribution is then plotted on the empirical distribution. Unlike
other examples herein, the empirical distribution is represented by a line instead of points.

Specific judgements of Pearson Type III fit are not made for these daily mean stream-
flows with the exception that there are considerable differences in the far-right (drought)
tail. The data trail off towards zero (no-flow), which is otherwise not representable on the
logarithmic scale. The Pearson Type III distribution would provide for, that is, estimate,
an order of magnitude or more streamflow than the data show or suggest for F � 0.1

for drought. Hence, the Pearson Type III greatly overestimates the availability of a natural
resource under drought conditions in this particular example.
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8–20
lmr <- lmoms(flow) # compute L-moments
# now compute the Pearson III parameters
PE3.par <- lmom2par(lmr, type="pe3")
PP <- pp(flow) # compute plotting positions
#pdf("fdc2pe3.pdf")
sflow <- sort(flow)
plot(PP, log10(sflow), type="l", lty=2,

xlab="NONEXCEEDANCE PROBABILITY",
ylab="LOG10(FLOW), IN FT^3/S")

lines(PP,log10(par2qua(PP,PE3.par)))
legend(0,4, c("DATA", "Pearson Type III distribution"),

lty=c(2,1))
#dev.off()
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Figure 8.9. Time series by day of daily mean streamflow for U.S. Geological Survey streamflow-
gaging station 06766000 Platte River at Brady, Nebraska from example 8–19

J
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Figure 8.10. Flow-duration curve of daily mean streamflow for U.S. Geological Survey streamflow-
gaging station 06766000 Platte River at Brady, Nebraska from example 8–20

8.2.8 Weibull Distribution

TheWeibull distribution as implemented by lmomco is a three-parameter version, whereas,
the built-in R version has two parameters. The three-parameter version offers additional
flexibility. The Weibull is comprehensively summarized in Rinne (2008).

DISTRIBUTION FUNCTIONS

The distribution functions of the Weibull having parameters ζ (location), β (scale), and
δ (shape) are

f(x) = δY δ−1 exp(−Y δ)/β (8.98)

F (x) = 1− exp(−Y δ) (8.99)

x(F ) = β[− log(1− F )]1/δ − ζ (8.100)

where
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Y = (x− ζ)/β (8.101)

The range of the distribution is
ζ ≤ x <∞ (8.102)

The Weibull distribution is a Reverse Generalized Extreme Value distribution. As
result, the Generalized Extreme Value algorithms are used for implementation of the
Weibull in lmomco. The relations between the Generalized Extreme Value parameters
(ξ, α, κ) from Hosking and Wallis (1997) are

κ = 1/δ (8.103)

α = β/δ (8.104)

ξ = ζ − β (8.105)

The Weibull distribution is popular in the analysis of lifetimes in which case x is time t.
If δ < 1, then as t increases the failure rate decreases—this condition is known as “infant
mortality.” If δ > 1, then as t increases the failure rate increases—this condition is known
as “wear out.” If δ = 1, the Weibull→ Exponential distribution, and the failure rate is
constant: h(x) = 1/β (see example 2–4 ).

Using R Using R

In the R environment, the CDF of the Weibull distribution is pweibull(). Given an
lmomco parameter list (see page 163 and ex. 7–1 ) for the Weibull distribution as para, the
equivalent R syntax is pweibull(a, b, c) for a=x+para$para[1], b=para$para
[3], and c=para$para[2]. For the current implementation for the lmomco package,
the Reverse Generalized Extreme Value distribution is used 1-cdfgev(-x,gevpara)

where the gevpara holds the converted Weibull parameters.

The Weibull and Generalized Extreme Value distribution are related. A comparison
is made in example 8–21 of the fits between the distributions to the number of Internal
Revenue Service refunds by state in the data IRSrefunds.by.state for fiscal year 2006
(http://www.irs.gov/taxstats/article/0,,id=168593,00.html accessed in
December 2007). The data are loaded, attach()ed, and sort()ed. The plotting posi-
tions are computed by pp(), and the sample L-moments are computed by lmoms(). The
parameters for the Weibull and Generalized Extreme Value distributions are respectively
computed by the parwei() and pargev() functions. The layout() function sets up
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two plots. The high-level check.pdf() function plots the two PDFs. The mtext() func-
tion renders the respective plot titles. The plots are shown in figure 8.11.

8–21
data(IRSrefunds.by.state) # from lmomco package
attach(IRSrefunds.by.state)
REFUNDS <- sort(REFUNDS); PP <- pp(REFUNDS)
lmr <- lmoms(REFUNDS)
PARwei <- parwei(lmr); PARgev <- pargev(lmr)
#pdf("weigevpdfA.pdf")
layout(matrix(1:2, ncol=1)) # setup to plots
check.pdf(pdfwei,PARwei, plot=TRUE) # function returns unity
mtext("Weibull distribution") # provide the plot with a title
check.pdf(pdfgev,PARgev, plot=TRUE) # function returns unity
mtext("Generalized Extreme Value distribution") # another title
#dev.off()

Although each is fit to the same L-moments, the two PDFs shown in figure 8.11
appear quite different. A logical line of inquiry is: How different do the fitted distribu-
tions look compared to the empirical distribution? This question is answered in the next
example. J

Example 8–22 and resulting plot in figure 8.12 make the comparison of the empirical
distribution to the fitted CDFs. Subsequently, a vector of nonexceedance probabilities is
created and set into the variable F. The intersection of the quantiles for the two distribu-
tions is created by sorting the values returned by the quawei() and quagev() functions.

8–22
F <- seq(0.05,0.99, by=0.001)
x <- sort(c(quawei(F,PARwei), quagev(F,PARgev)))
#pdf("weigevcdfA.pdf")
plot(log10(x), qnorm(cdfwei(x,PARwei)), type="l", lwd=3,

xlab="LOG10 OF NUMBER OF REFUNDS BY STATE",
ylab="STANDARD NORMAL DEVIATE")

lines(log10(x), qnorm(cdfgev(x,PARgev)))
points(log10(REFUNDS), qnorm(PP), cex=2)
#dev.off()

Next, the plot is drawn in example 8–22 . The cdfwei() and cdfgev() functions
compute the F values for the empirical distribution. The vertical axis is a probability
axis by casting the F values into standard normal deviates using the qnorm() function.
The base-10 logarithms of the quantiles x are used to reduce visual curvature of the plot,
note however, that the distributions are not fit to the logarithms of the data. The Weibull
(thick line) and the Generalized Extreme Value (thin line) distributions are plotted. The
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Figure 8.11. Comparison of probability density functions for Weibull and Generalized Extreme
Value distributions fit to same L-moments of number of Internal Revenue Service refunds by
state from example 8–21

empirical distribution finally is plotted by the points() function. The data points are
drawnunnecessarily large for demonstration of thecex argument,which scales the points
larger or smaller depending on the cex argument value.

Several observations of figure 8.12 can be made. Because each is fit to λ1, λ2, and τ3,
both distributions generally mimic the data between−1 and 1 standard deviations. Sub-
stantial differences exist primarily in the tails. Neither distribution exhibits quite enough
straightness in the right tail as suggested by the data and the respective plotting posi-
tions. The figure shows that the largest four values have been underestimated. For the left
tail, the Weibull distribution has the preferable fit compared to that of the Generalized
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Figure 8.12. Comparison of cumulative probability functions for Weibull (thick line) and General-
ized Extreme Value (thin line) distributions fit to same L-moments and empirical distribution of
number of Internal Revenue Service refunds by state from example 8–22

Extreme Value. Whether the tail differences are important or have ramifications for later
interpretations is a discipline-specific problem. J

8.3 Three-Parameter Distributions not yet supported by the lmomco
Package

This section provides a summary of selected three-parameter distributions with existing
L-moment support that are currently (May 2011) not implemented in the lmomco package.
These distributions are discussed and included in this dissertation because they repre-
sent the current (May 2011) front line of lmomco development regarding three-parameter
distributions.
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8.3.1 Polynomial Density-Quantile3 Distribution

The Polynomial Density-Quantile3 distribution was developed byHosking (2007a) as part
of an investigation into derived distributions from the maximization of the entropy (or
information content) of a distribution subject to constraints. In particular the Polynomial
Density-Quantile3 is the distribution that has maximum entropy resulting from the max-
imization conditional on having specified values for the L-moments of λ1, λ2, and λ3 are
specified.

DISTRIBUTION FUNCTIONS

The distribution functions of the Polynomial Density-Quantile3 having parameters
ξ (location), α (scale, α > 0), and κ (shape,−1 < κ < −1) are

f(x) has no explicit analytical form

F (x) has no explicit analytical form

x(F ) = ξ + α

[
log

(
F

1− F

)
+ κ log

(
[1− κ(2F − 1)2]

4F (1− F )

)]
(8.106)

The range of the distribution is
−∞ < x <∞ (8.107)

The L-moments are

λ1 = ξ + α[(1 + κ) log(1 + κ)− (1− κ) log(1− κ)− κ log(4)] (8.108)

λ2 =
α(1− κ2)
(1− κτ3)

(8.109)

τ3 =
1

κ
− 1

arctanh(κ)
(8.110)

τ4 = (5τ3/κ− 1)/4 (8.111)

The parameter κ requires numerical solution of eq. (8.110), and the other parameters are

ξ = λ1 − α[(1 + κ) log(1 + κ)− (1− κ) log(1− κ)− κ log(4)] (8.112)

α =
λ2(1− κτ3)

(1− κ2)
(8.113)
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The Polynomial Density-Quantile3 distribution has larger τ pdq34 than τ glo4 of the Gener-
alized Logistic distribution. For example, for a sample distribution having τ̂3 = 0.1795

has, by eq. (8.25), a τ glo4 = 0.1935, and by eq. (8.111), a τ pdq34 = 0.1988 for a Polynomial
Density-Quantile3, by eq. (8.110), having κ = 0.5.

8.3.2 Polynomial Density-Quantile4 Distribution

The Polynomial Density-Quantile4 distribution was developed by Hosking (2007a) and
is a symmetrical distribution that has maximum entropy conditional on having specified
values for the L-moments of λ1, λ2, and λ4 are specified.

DISTRIBUTION FUNCTIONS

The distribution functions of the Polynomial Density-Quantile4 having parameters
ξ (location), α (scale, α > 0), and κ (shape, 0 < κ < 1) are

f(x) has no explicit analytical form

F (x) has no explicit analytical form

x(F ) = ξ + α

[
log

(
F

1− F

)
− 2κ arctanh(κ[2F − 1])

]
(8.114)

and for κ (shape,−∞ < κ < 0) are

f(x) has no explicit analytical form

F (x) has no explicit analytical form

x(F ) = ξ + α

[
log

(
F

1− F

)
+ 2κ arctan(κ[2F − 1])

]
(8.115)

The range of the distribution is
−∞ < x <∞ (8.116)
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The L-moments are

λ1 = ξ (8.117)

λ2 =

α(1− κ2)arctanh(κ)/κ if κ > 0

α(1 + κ2) arctan(κ)/κ if κ < 0
(8.118)

τ3 = 0 (8.119)

τ4 =

−1
4

+ 4
5κ

(
1
κ
− 1

arctanh(κ)

)
if 1

6
≤ τ4 < 1

−1
4
− 4

5κ

(
1
κ
− 1

arctan(κ)

)
if−1

4
< τ4 <

1
6

(8.120)

The parameter κ requires numerical solution of eq. (8.120), and the other parameters are

ξ = λ1 (8.121)

α =

λ2κ/[(1− κ2)arctanh(κ)] if κ > 0

λ2κ/[(1 + κ2) arctan(κ)] if κ < 0
(8.122)

The Polynomial Density-Quantile4 distribution is symmetrical about ξ and is quite sim-
ilar to the Normal but exhibits heavier tails. Using the standard Normal for reference,
Hosking (2007a, p. 2883) reports that “PDF and QDF functions [of the two distributions]
are very similar except in the extreme tails.” In particular, the distributions differ by less
than 0.03 in the quantiles for 0.011 < F < 0.989. The tails of the Polynomial Density-
Quantile4 are exponentially decreasing and the distribution could be useful in distribu-
tional analysis with data exhibiting similar tail characteristics.

8.3.3 Student t (3-parameter) Distribution

The Student t (3-parameter) distribution is used by Hosking (1999) for the modeling of
IBM stock prices. The L-moments of the ST3(ξ = 0, α = 1, ν = 2) are considered by Jones
(2002, p. 48).
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DISTRIBUTION FUNCTIONS

The distribution functions of the Student t (3-parameter) having parameters ξ (location),
α (scale, α > 0), and ν (degrees of freedom, shape, ν > 1) are

f(x) =
Γ(1

2
+ 1

2
ν)

αν1/2 Γ(1
2
)Γ(1

2
ν)

(1 + t2/ν)−(ν+1)/2 (8.123)

F (x) has no explicit analytical form

x(F ) has no explicit analytical form

where
t =

(x− ξ)
α

(8.124)

The range of the distribution is
−∞ < x <∞ (8.125)

The L-moments are

λ1 = ξ (8.126)

λ2 = 26−4νπαν1/2 Γ(2ν − 2)/[Γ(1
2
ν)]4 (8.127)

τ3 = 0 (8.128)

τ4 =
15

2

Γ(ν)

Γ(1
2
)Γ(ν − 1

2
)

∫ 1

0

(1− x)ν−3/2[Ix(
1
2
, 1
2
ν)]2

√
x

dx− 3

2
(8.129)

where Ix(12 ,
1
2
ν) is the CDF of the Beta distribution. Hosking (1999) does not provide

details as to the definition of Ix(12 ,
1
2
ν).1 In Hosking and Wallis (1997, p. 201), Ix(p, q)

is the incomplete Beta function ratio, which is eq. (8.92) of this dissertation; numerical
experiments, not presented here, seem to confirm that eq. (8.129) using the CDF of the
Beta distribution is correct.

The parameters require numerical methods. Hosking (1999) reports that a one-to-one
relation between τ4 and ν exists and a table could be computed and ν found by linear

1 This is quite unusual for Jonathan and such ambiguity is surprising. This author (Asquith) is
a fan of Jonathan’s work and eagerly awaits the discovery of each new reference by him and
commends Jonathan for a long history of well written and documented articles that are especially
approachable for non-mathematicians.
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interpolation.2 The parameters ξ and α readily follow by

ξ = λ1 (8.130)

α =
λ2

26−4νπν1/2 Γ(2ν − 2)/[Γ(1
2
ν)]4

(8.131)

8.4 Summary

Three-parameter distributions often are preferable to two-parameter distributions in the
application of distributional analysis where the skewness of the data is expected to be
different from zero (asymmetrically distributed data about themean or different from that
of other distributions). The 8 three-parameter distributions formally considered in this
chapter are fit to the first three L-moments of the data. Both the lmomco and lmom packages
provide support for many three-parameter distributions. The 22 examples demonstrate a
variety of applications and generally have expanded complexity relative to the examples
in Chapter 7. Further, additional comparisons between product moments and L-moments
to those in that chapter also are made.

• The examples for the Generalized Extreme Value distribution consider the distribu-
tion of annual wind speed data reported by Hosking and Wallis (1997) in which the
parameters of the Generalized Extreme Value were already provided for three cities
in Texas. A table of selected quantiles of the three Generalized Extreme Value is pro-
vided. The examples also create a small application using the Generalized Extreme
Value to generate a quantile-quantile plot (expressed in annual recurrence interval) of
some annual peak streamflow data in Texas contained within the lmomco package.

• The examples for the Generalized Logistic distribution consider the distribution of
1-hour annual maxima of rainfall for a county in Texas based on Generalized Logis-
tic parameters provided by Asquith (1998). CDF and QDF plots are created and the
L-moments of the given parameters computed.

• The examples for the Generalized Normal distribution create three representations of
the PDF for three ensembles of L-moments in order to demonstrate the effect of τ3 on

2 This is a similar method of parameter estimation as the author (Asquith) has implemented for
the Rice distribution in the lmomco package.
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the fitted distribution. The examples continue with a return to annual peak stream-
flow data considered in Chapter 2. The Generalized Normal and log-Normal are fit
to the L-moments (real space) and product moments (logarithms) of the annual peak
streamflow data and a QDF plot along with the sample data is created. The Gener-
alized Normal provides a preferable fit. The examples continue with an exploration
of the sampling properties of the Generalized Normal for a log-Normal parent. The
statistical simulations show that the product moments might perform better than
L-moments when a parent is truly log-Normal. Finally, an example is provided com-
paring the Generalized Normal to the log-Normal3 and various lower limits of the
log-Normal3 are considered.

• The examples for the Generalized Pareto distribution show manual computations of
the L-moments from a given set of parameters. The computations are shown because
the Generalized Pareto has some readily used analytical solutions for the parameters
but also are more complex than the elementary solutions for the Exponential distribu-
tion.

• The examples for the Trimmed Generalized Pareto distribution compute some
TL-moments by analytical and numerical methods and equivalency is shown. The
robustness of the TL-moments in the presence of contrived contamination is explored
with the focus on the F = 0.99 quantile. The bias of the TL-moments for fitting
and estimation of the quantile is shown to be considerably less than that from use of
L-moments.

• No examples for the Right-Censored Generalized Pareto distribution are provided in
this chapter.

• The examples for the Pearson Type III distribution involve the exploration of the flow-
duration curve for some daily mean streamflow data in Nebraska. A comparison
between the fitted distribution and the data is made along with several plots. Finally,
example computations comparing the Pearson Type III to the Normal distribution are
made.

• The examples for the Weibull distribution consider some income tax data for the
United States. PDFs of the Weibull and Generalized Extreme Value are created by
fitting to the L-moments and plotted. Finally, CDF plots are created by computation
of appropriate distribution ranges using selected nonexceedance probabilities and
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QDF functions. The examples show that the Weibull is preferable to the Generalized
Extreme Value for these data.

Finally, the chapter concludeswith a summary of selected three-parameter distributions
with existing L-moment derivations that are not yet (as of May 2011) implemented within
the lmomco package.
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Chapter 9

L-moments of Four- and More Parameter Univariate
Distributions

In this chapter, I present continued discussion of distribution support by L-moments

in several R packages, but focus remains clearly on the lmomco package. The chapter

provides a distribution-by-distribution discussion of mathematics, features, parame-

ters, and L-moments of four- and more parameter distributions. These distributions are

not as well known as those in the two previous chapter but are remarkablely useful in

L-moment applications. In general, the mathematics of the distributions are even more

complex than seen in the previous chapter. Readers possessing considerable familiarity

with statistics and R are likely to generally browse as needed through the distributions.

Other readers are encouraged to at least review this chapter with the mindset that peri-

odic return likely will be made. Because of the ubiquitous two- and three-parameter

distribution in practice, this chapter might be of secondary importance to readers pur-

suing mastery of distributional analysis with L-moment statistics using R.

9.1 Introduction

Distributions having four- and more parameters are described in this chapter. These dis-
tributions are less well-known than many of the other lower-order (lower-parameter) dis-
tributions described in the previous two chapters. However, it will be seen that four- and
more parameter distributions are very attractive for mimicking the geometry of heavy-
tailed distributions.

The four- and more parameter distributions are fit to the mean, scale, shape (skewness),
and kurtosis (seen simply as a higher order measure of shape) of a data set. For sufficiently
large sample sizes (vagueness on how large is “large” is intentional), sample L-moments
can reliably estimate distribution shape through τ̂4 and even distribution shape by the
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fifth L-moment through τ̂5. For some types of distributional analyses, four- and more
parameter distributions are flexible and might provide useful fits that are not attainable
by lower-order distributions.

The flexibility is particularly useful in the study three-parameter distributions because
four- and more parameter distributions, being simultaneously fit to τ3, τ4, and higher, can
mimic the shapes of many three-parameter distributions. The flexibility does come at the
price of having to estimate additional moments at fourth or fifth order. It is important
to note that, as a general rule, parameter estimation for four- and more parameter dis-
tributions is considerably more complex than lower parameter distributions—numerical
methods for minimization or root-solving generally are required.

Final notes about the source of material and in particular the mathematics of the four-
andmore parameter distributions is needed. Unless otherwise stated, the material is heav-
ily based on Asquith (2007), Hosking (1996b), Hosking (1994), Hosking and Wallis (1997),
Karian and Dudewicz (2000), and Stedinger and others (1993). These and additional ref-
erences are provided on a distribution-specific basis.

9.2 Four- and More Parameter Distributions of the lmomco Package

9.2.1 Kappa Distribution

A particularly useful distribution for both applied and research investigations is the four-
parameter Kappa distribution throughly documented by Hosking (1994) and used in
several hydrometeorologic investigations (Hosking and Wallis, 1993, 1997; Parida, 1999;
Dupuis andWinchester, 2001; Asquith and others, 2006). The Kappa distribution of today
is a generalization of a three-parameter version introduced at the end of a paper on pre-
cipitation amount modeling by Mielke (1973) who states that “further investigation” is
needed.1 Because the Kappa distribution has four parameters, it can acquire a wider range
of shapes than two- or three-parameter distributions such as the Normal (two parame-
ter) or Generalized Extreme Value (three parameter) distributions. The Kappa parameter
space as measured by the pairing {τ3, τ4} is large enough2 to make it especially useful for
1 It seems that Hosking (1994) was the first to take up the mantle of four-parameter Kappa inves-
tigation with vigor.
2 Although not as large as the Generalized Lambda and Wakeby distributions described later in
this chapter.
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many types of distributional analyses. Stress is needed that sample sizes should be suffi-
ciently large for reliable estimation of τ̂4. Finally, the Kappa is attractive because parameter
estimation for the Kappa is much more straightforward than for the Generalized Lambda
distribution.

The Kappa distribution is of particular interest to L-moment practitioners because with
h = −1, the distribution is the Generalized Logistic distribution; with h = 0, it is the
Generalized Extreme Value; and with h = 1, it is the Generalized Pareto. Because of the
Kappa’s parentage over these collectively popular distributions and the large range of
{τ3, τ4}-parameter space attained, the distribution is very useful in simulation studies to
assess performance of the Generalized Logistic, Generalized ExtremeValue (andGumbel),
Generalized Normal, and Generalized Pareto distributions.

DISTRIBUTION FUNCTIONS

The distribution functions of the Kappa having parameters ξ (location), α (scale), κ
(shape1), h (shape2) subject to the constraint that h ≥ 0 and κ > −1 or if h < 0 and
−1 < κ < −1/h are

f(x) = α−1[1− κ(x− ξ)/α]1/k−1 × F 1−h (9.1)

F (x) = [1− h(1− κ(x− ξ)/α)1/k]1/h (9.2)

x(F ) = ξ +
α

κ

[
1−

(
1− F h

h

)κ]
(9.3)

The ranges of the distribution xL ≤ x ≤ xU are

xL =


ξ + α(1− h−κ)/κ if h > 0

ξ + α/κ if h ≤ 0 and κ < 0

−∞ if h ≤ 0 and κ ≥ 0

(9.4)

xU =

ξ + α/κ if κ > 0

∞ if κ ≤ 0
(9.5)
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The L-moments are

λ1 = ξ + α(1− g1)/κ (9.6)

λ2 = α(g1 − g2)/κ (9.7)

τ3 = (−g1 + 3g2 − 2g3)/(g1 − g2) (9.8)

τ4 = (−g1 + 6g2 − 10g3 + 5g4)/(g1 − g2) (9.9)

where gr is

gr =


r Γ(1 + κ) Γ(r/h)/[h1+κ Γ(1 + κ+ r/h)] if h > 0

r Γ(1 + κ) Γ(−κ− r/h)/[(−h)1+κ Γ(1− r/h)] if h < 0

(9.10)

where Γ(a) is the complete gamma function that is shown in eq. (8.85).

There are no simple expressions for the parameters in terms of the L-moments. Numer-
ical methods must be used. Algorithmically, the condition of κ = 0 or h = 0 for the
distribution functions is accommodated by the following limiting property of logarithms
and exponents

exp(a) = lim
b→0

(1 + ab)1/b (9.11)

The availability, flexibility, and suitability of the Kappa in distributional analysis
has generated additional interest in parameter estimation methods. Although relatively
straight forward equations are involved for the method of L-moments, iterative solutions
are still required to simultaneously solve for κ and h and then ξ and α and convergence
“sometimes fails” (Park and Park, 2002, p. 65) or is not available by Hosking’s algorithms
(Hosking, 1996b) because τ4 lies above the Generalized Logistic line (see Chapter 10).
Park and Park (2002) explore the maximum likelihood method with a penalty method
for parameter estimation. The authors present two examples of parameter estimation by
methods of L-moments and maximum likelihood. Park and Park, (p. 68) state that “max-
imum likelihood [parameter] estimates can always be calculated” and that “more exten-
sive study is needed for sophisticated comparison [between] the two estimation methods
[of L-moments and maximum likelihood].” The Kappa parameter estimation is further
considered by Singh and Deng (2003) in which an entropy-based parameter estimation
method is compared to the method of L-moments. The results of their study are ambigu-
ous in that these two estimation methods perform well or are “comparable” (Singh and
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Deng, 2003, p. 90), but use of L-moments is far simpler than entropy. Singh and Deng
conclude that “the combinations of the two methods can further improve parameter esti-
mation [for the Kappa].”

Using R Using R

The Kappa distribution is demonstrated on the annual peak streamflow data for
U.S. Geological Survey streamflow-gaging station 08190000 Nueces River near Laguna,
Texas. The data are available in the data set USGSsta08190000peaks. Example 9–1

produces, using algorithmic similarity to other examples with similar themes in this dis-
sertation, the empirical distribution by Weibull plotting positions and, by the method of
L-moments, fits a Kappa distribution using the parkap() function. The quantiles of the
Kappa are computed by the quakap() function. The distributions are shown in figure 9.1.
A standard Normal tranformation (qnorm()) is used for the horizontal axis, and a log10()

transformation log10() is used for the vertical axis. These transformations increase the
linearity in the figure.

9–1
data(USGSsta08190000peaks) # from lmomco package
attach(USGSsta08190000peaks)
Q <- sort(peak_va) # sort data for plotting
detach(USGSsta08190000peaks) # detach names from the workspace
PP <- pp(Q) # compute Weibull plotting positions
lmr <- lmoms(Q)
PARkap <- parkap(lmr) # L-moments and parameters

#pdf("nueces1.pdf")
plot(qnorm(PP),log10(Q),

xlab="STANDARD NORMAL DEVIATE",
ylab="LOG10(STREAMFLOW, IN FT^3/S)")

lines(qnorm(PP),log10(quakap(PP,PARkap)), lwd=3)
legend(-2,5.5, c("Kappa by L-moments"),

lwd=c(3), lty=c(1), box.lty=0, bty="n")
#dev.off()

Some interpretations of the Kappa fit in figure 9.1 can be made. The empirical distri-
bution has some interesting sinuous or seemingly distinguishable (steepness, curvature)
parts. The two “hinge” points appear near −0.55 and 0.10 standard deviations. For the
data from this particular location, values with about F < 0.29 (pnorm(-0.55)) likely
represent drought-like conditions inwhich the annual peak streamflowdoes not represent
storm runoff. For values with the approximate range 0.29 < F < 0.54 (pnorm(0.10)),
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Figure 9.1. Empirical distribution of annual peak streamflow for U.S. Geological Survey
streamflow-gaging station 08190000 Nueces River near Laguna, Texas and Kappa distribution
fit by the method of L-moments from example 9–1

the relatively flatter portion of the data could represent a flow regime during years for
which flows are relatively stable and do not represent periods (years) for which the flows
are not caused by “full reaction” of the approximately 737 square-mile watershed to large
rainfall events. From a perspective of distributional analysis of flood flows, the right-tail
portion of the distribution is of primary interest. The figure shows that the Kappa has an
acceptable fit to the general curvature of the empirical distribution.

The Kappa has an apparently acceptable fit in the right-tail of the empirical distribution
in figure 9.1. The Kappa distribution is compared to the log-Normal distribution, fit by
the method of moments, and the Generalized Normal distribution, fit by the method of
L-moments in example 9–2 . The results are shown in figure 9.2. The horizontal and ver-
tical limits have been changed by the xlim and ylim arguments to the plot() function.
The variable F contains F values conveniently produced by the nonexceeds() function.
Finally for this example, the qlmomco() is used to create parallel syntax (see lines labeled
# Kappa and # GNO) for computation of Kappa and Generalized Normal quantiles.
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9–2
PARgno <- pargno(lmr)
mu.lg <- mean(log10(Q)); sig.lg <- sd(log10(Q))
F <- nonexceeds()
#pdf("nueces2.pdf")
plot(qnorm(PP),log10(Q), xlim=c(-1,3), ylim=c(2.5,6),

xlab="STANDARD NORMAL DEVIATE",
ylab="LOG10(STREAMFLOW, IN FT^3/S)")

lines(qnorm(F),log10(qlmomco(F,PARkap)), lwd=3) # Kappa
lines(qnorm(F),log10(qlmomco(F,PARgno)), lwd=1) # GNO
lines(qnorm(F),

qnorm(F, mean=mu.lg, sd=sig.lg),
lty=2) # plot lognormal distribution as dashed line

legend(1,4.5, c("Kappa by L-moments",
"GNO by L-moments",
"Log-normal by \n product moments"),

lwd=c(3,1,1), lty=c(1,1,2), box.lty=0, bty="n")
#dev.off()
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Figure 9.2. Empirical distribution of annual peak streamflow for U.S. Geological Survey
streamflow-gaging station 08190000 Nueces River near Laguna, Texas and three selected
distributions from example 9–2

265



Texas Tech University,William H. Asquith, May 2011

Dupuis andWinchester (2001) provide a study of the Kappa in the context of the meth-
ods of L-moments and maximum likelihood with a focus on “infeasible” parameters
and circumstances in which τ4 is above the τ glo4 of the Generalized Logistic and hence
Kappa parameters are “uncomputable.” Their definition of infeasible is the same as that
on page 104 of this dissertation and treated by Chen and Balakrishnan (1995) for differ-
ent distributions. Dupuis and Winchester conduct a more than 1,000 drawing simulation
study for n = 50 samples for sequences of κ and h parameters using ξ = 0 and α = 1

without a loss of generality. A select part of their study is reproduced by the code in
example 9–3 .

9–3
n <- 50; nsim <- 1000 # sample size and no. of simulation
Ks <- c(-0.4, -0.2, 0, 0.2, 0.4) # kappas
Hs <- c(-1.2, -0.8, -0.4, 0, 0.4, 0.8, 1.2) # h’s

for(k in Ks) { # for each kappa
for(h in Hs) { # for each h

failed <- 0 # reset
infeas <- 0 # reset

for(i in 1:nsim) { # for each simulation
KAPsim <- NA

while(1) { # IMPORTANT, until computable param are found
Xsim <- rlmomco(n, vec2par(c(0,1,k,h), type="kap"))
KAPsim <- parkap(lmoms(Xsim))
ifelse(KAPsim$ifail > 0, failed <- failed + 1, break)

}

kapsup <- KAPsim$support # support of fitted Kappa dist.

if(kapsup[1] > min(Xsim) | kapsup[2] < max(Xsim)) {
infeas <- infeas + 1 # found infeasible

}
}
DWinf <- round( 100 * infeas/nsim, digits=1)
DWcom <- round( 100 * failed/(nsim+failed), digits=1)
# Make nice rows of output
# kappa h infeasible.percent[uncomputable.percent]
cat(c(k," ",h," ",DWinf,"[",DWcom,"]","\n"), sep="")

}
}
# One example line from the cat() is shown below
# -0.2 0.4 33.6[13.3]
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The example reproduces the κ and h sequences used by Dupuis and Winchester (2001)
and then mimics the quadruple loop that the authors must of used by following their
written description of their algorithm. The example computes the percent of time that the
parameters are infeasible or uncomputable. Feasible means that the support of the fitted
distribution is inside the range of the observed (or simualted here) data. Readers are asked
to note the addition of the number of failed attempts in the denominator used to compute
the DWcom variable, which Dupuis and Winchester also are careful to point out. The last
line of the example shows the results for κ = −0.2 and h = 0.4, and for these parameters,
infeasible parameters were found 33.6 percent of the time and 13.3 percent of the time
the parameters could not even be computed (τ4 is above the τ

glo
4 of the Generalized Logis-

tic distribution, see Chapter 10). These two percentages compare favorably with those in
Dupuis and Winchester (2001, p. 108), who report “36.6[12.4]” compared to “33.6[13.3]”
in example 9–3 . The remainder of the output (not shown) by example 9–3 also com-
pares favorably with Dupuis and Winchester. This {τ3, τ4}-parameter space restriction is
removed when using the Generalized Lambda distribution described in the next section.
But the parameter space expansion comes at the expensive of more complex parameter
estimation nuances. J

9.2.2 Generalized Lambda Distribution

The Generalized Lambda distribution (Karian and Dudewicz, 2000; Asquith, 2007; Karva-
nen and Nuutinen, 2008) is a flexible distribution with deceptively simple PDF and QDF
functions compared to the difficulty of parameter estimation in terms of its moments
(product moment or L-moment). A reason that the Generalized Lambda is of interest is
that it has a larger {τ3, τ4}-parameter space than the Kappa. However, the Generalized
Lambda is problematic to work with in part because multiple parameter solutions are
possible, and demonstration and accommodation of this possibility is made in this dis-
sertation. In circumstances in which the analyst is to produce an equation for the fitted
distribution, the Generalized Lambda is more attractive because of the simpler, that is,
easier to “deploy,” QDF form than that for the Kappa. Mercy and Kumaran (2010) pro-
vide extensive derivations of probability-weighted moments for the Generalized Lambda
under censoring conditions.
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DISTRIBUTION FUNCTIONS

The distribution functions of the Generalized Lambda having parameters ξ (location),
α (scale), κ (shape1), h (shape2) are

f(x) =
1

α[κ(F κ−1)− h(1− F )h−1]
(9.12)

F (x) has no explicit analytical form

x(F ) = ξ + α[F κ − (1− F )h] (9.13)

The ranges of the distribution are listed below where ( or ) note exclusion of∞ and the
brackets [ or ] note inclusion of the indicated limit:

κ h Range

κ > 0 h > 0 [ξ − α, ξ + α]

κ > 0 h = 0 [ξ, ξ + α]

κ = 0 h > 0 [ξ − α, ξ]
κ < 0 h < 0 (−∞,∞)

κ < 0 h = 0 (−∞, ξ + α]

κ = 0 h < 0 [ξ − α,∞)

The first three L-moments are

λ1 = ξ + α

(
1

κ+ 1
− 1

h+ 1

)
(9.14)

λ2 = α

(
κ

(κ+ 2)(κ+ 1)
+

h

(h+ 2)(h+ 1)

)
(9.15)

λ3 = α

(
κ(κ− 1)

(κ+ 3)(κ+ 2)(κ+ 1)
− h(h− 1)

(h+ 3)(h+ 2)(h+ 1)

)
(9.16)

The fourth L-moment of the Generalized Lambda is

Kλ4 =
κ(κ− 2)(κ− 1)

(κ+ 4)(κ+ 3)(κ+ 2)(κ+ 1)

Hλ4 =
h(h− 2)(h− 1)

(h+ 4)(h+ 3)(h+ 2)(h+ 1)

λ4 = α(Kλ4 +Hλ4) (9.17)
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The fifth L-moment of the Generalized Lambda is

Kλ5 =
κ(κ− 3)(κ− 2)(κ− 1)

(κ+ 5)(κ+ 4)(κ+ 3)(κ+ 2)(κ+ 1)

Hλ5 =
h(h− 3)(h− 2)(h− 1)

(h+ 5)(h+ 4)(h+ 3)(h+ 2)(h+ 1)

λ5 = α(Kλ5 −Hλ5) (9.18)

Let Lλ be defined as follows:

Lλ = κ(h+ 2)(h+ 1) + h(κ+ 2)(κ+ 1) (9.19)

The L-moment ratio τ3 is

Kτ3 = κ(κ− 1)(h+ 3)(h+ 2)(h+ 1)

Hτ3 = h(h− 1)(κ+ 3)(κ+ 2)(κ+ 1)

τ3 =
Kτ3 −Hτ3

(κ+ 3)(h+ 3)Lλ
(9.20)

The L-moment ratio τ4 is

Kτ4 = κ(κ− 3)(κ− 2)(κ− 1)(h+ 5)(h+ 4)(h+ 3)(h+ 2)(h+ 1)

Hτ4 = h(h− 3)(h− 2)(h− 1)(κ+ 5)(κ+ 4)(κ+ 3)(κ+ 2)(κ+ 1)

τ4 =
Kτ4 +Hτ4

(κ+ 4)(h+ 4)(κ+ 3)(h+ 3)Lλ
(9.21)

The L-moment ratio τ5 is

Kτ5 = κ(κ− 2)(κ− 1)(h+ 4)(h+ 3)(h+ 2)(h+ 1)

Hτ5 = h(h− 2)(h− 1)(κ+ 4)(κ+ 3)(κ+ 2)(κ+ 1)

τ5 =
Kτ5 −Hτ5

(κ+ 4)(h+ 4)(κ+ 3)(h+ 3)Lλ
(9.22)

Karvanen and Nuutinen (2008) provide a general equation for L-moment computation
for r ≥ 2

λr = α

r−1∑
j=0

(−1)r−j−1
(
r − 1

j

)(
r + j − 1

j

)(
1

j + 1 + κ
+

(−1)r

j + 1 + h

)
(9.23)

269



Texas Tech University,William H. Asquith, May 2011

Finally, the L-moments are potentially defined for

κ > −1 and h > −1 (9.24)

There are no simple expressions for the parameters in terms of the L-moments. Numeri-
cal methods must be employed andmultiple solutions in different regions of {κ, h}-space
are common. Besides demonstration in the remainder of this section, themultiple solution
nature of the Generalized Lambda is considered extensively near the end of Section 11.2.
The distribution with κgld = 0 is a form of the Generalized Pareto distribution.

Using R Using R

The Generalized Lambda distribution is demonstrated using the annual peak stream-
flow data for U.S. Geological Survey streamflow-gaging station 08190000 Nueces River
near Laguna, Texas. The data are available in the data set USGSsta08190000peaks.
Example 9–4 , using algorithmic similarity to other examples, produces the empirical
distribution by Weibull plotting positions and by the method of L-moments fits a Gener-
alized Lambda distribution using the pargld() function. The quantiles of the General-
ized Lambda are computed by the quagld() function. For this example, two solutions
of the Generalized Lambda appear available for the tolerance on the minimization set
by eps=1e-2. The two Generalized Lambda fits are shown in figure 9.3 along with the
fit for the Kappa as a reference.

9–4
data(USGSsta08190000peaks) # from lmomco package
attach(USGSsta08190000peaks)
Q <- sort(peak_va) # sort the annual peak streamflow values
PP <- pp(Q) # compute Weibull plotting positions
lmr <- lmoms(Q); PARkap <- parkap(lmr) # and fit a Kappa

# Now for the GLD distribution
PARgld1 <- pargld(lmr, eps=1e-2); # print(PARgld1)
# output has been suppressed, values lifted from the output
other <- unlist(PARgld2$rest[4,1:4]); # print(other)
PARgld2 <- vec2par(c(5541.6, 245064,

7.551838, 308.4899734), type="gld")

The textual output of the pargld() function has been suppressed in the example, but
two viable solutions exist.3 The parameters for one solution are shown in the vec2par()
3 The author has chosen a large tolerance to cause two solutions to be found for this example.
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function. Because numericalmethods are used, the precise numerical values for the param-
eters will be different in subsequent trials of the pargld() function.

As shown in example 9–4 , the Generalized Lambda has two solutions for the pro-
vided L-moments. The minimum least-squares solution on τ3 and τ4 that is computed
by pargld() is manually set into the PARgld2 variable, and the error is ε≈ 1E−9. The
first and primary solution in PARgld1 has a much larger ε≈ 2E−3. Refining interpreta-
tion and using the difference ∆τ5 = τ

gld
5 − τ5, it is seen that ∆τ5 ≈ 0.07 for solution in

PARgld1 and∆τ5≈ − 0.11 for solution in PARgld2. Asquith (2007) and documentation
of lmomco provides further details of this algorithm. The preferable solution in PARgld1
is about GLD(−58839, −54582, 59.23810, −0.414052). Example 9–5 plots both Gener-
alized Lambda solutions and that for the Kappa. The author suggests that the preferred
solution in PARgld1 is visually more consistent with the empirical distribution for right-
tail, annual peak streamflow estimation, and this is the tail of interest here.

9–5
#pdf("nueces3.pdf")
plot(qnorm(PP),log10(Q),

xlab="STANDARD NORMAL DEVIATE",
ylab="LOG10(STREAMFLOW, IN FT^3/S)")

lines(qnorm(PP), log10(quagld(PP,PARgld1)), lwd=3)
lines(qnorm(PP), log10(quagld(PP,PARgld2)), lwd=1)
lines(qnorm(PP), log10(quakap(PP, PARkap)), lwd=1, lty=2)
legend(-2,5.5, c("GLD1(preferred)","GLD2","Kappa by L-moments"),

lwd=c(3,1,1), lty=c(1,1,2), box.lty=0, bty="n")
#dev.off()

Further solution justification beyond the author’s visual assessment of the previous
paragraph is needed. The convergence error on τ3 and τ4 forPARgld2 is ε≈1E−9, which is
about 7 orders of magnitude better than that for PARgld1. The∆τ5 performance however
is substantially better in PARgld1 than PARgld2. These statements are made to point out
that PARgld2 is numerically superior in terms of fit to the L-moments but lacks a visibly
appropriate fit. A QDF mixture might be an alternative model for analysis of these data.4

The author suggests that the choice of a general value for eps for the pargld() (and
parTLgld() by association) function is an open problem for additional research.

To conclude, the author recognizes the greater complexity and interpretation required
for parameter estimation and subsequent selection of a preferred fit for the distribution
4 Such a mixture could be constructed using the Intermediate Rule on page 35 in which two
distributions used and each fit to the upper and lower halves of the data. The weight factor for the
Intermediate Rule could be chosen to satisfy the overall mean.
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Figure 9.3. Empirical distribution of annual peak streamflow for U.S. Geological Survey
streamflow-gaging station 08190000 Nueces River near Laguna, Texas and two Generalized
Lambda distributions and Kappa fit to sample L-moments from example 9–4

relative to the lack of analyst intervention needed for the Kappa. The author suggests that
the Generalized Lambda could be useful for circumstances in which τ4 is greater than that
of the Generalized Logistic distribution and therefore the Kappa cannot be fit. Thus, the
Generalized Lambda thus can have a complementary role to the Kappa in circumstances
in which “hyper” L-kurtosis occurs. J

Su (2010) provides the GLDEX package for R to fit the Generalized Lambda distribu-
tion and small part of that package is parameter estimation by L-moments (see page 10
of this dissertation for more discussion). The L-moment functions provided by GLDEX
are Lmoments(), Lcoefs(), Lmomcov(), Lmoments_calc(), Lmomcov_calc(), and
t1lmoments(). These functions apparently are authored by Karvanen (2009) because
credit is given; the GLDEX does not require the library() loading of the Lmoments
package by Karvanen (2009).

Example 9–6 is derived from examples in the GLDEX package. The example simulates
n = 500 standard Normal values and then computes two parameter suites for the Gener-
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alized Lambda. There are two parameterizations of the distribution by the package: RPRS
and RMFMKL and interest here is the former. The example ends by creating the gldex
variable, which holds theRPRS parameterization because this is most similar (nearly iden-
tical) to that shown in this dissertation (see eq. (9.13)). The fun.RPRS.lm() function and
inversion of its second returned parameter are of primary interest in the example.

9–6
library(GLDEX)
set.seed(1) # author would like others to mimic
fake.dat <- rnorm(500,0,1) # simulate 500 standard normals
fun.data.fit.lm(fake.dat) # GLDEX has TWO GLD parameterizations
# RPRS RMFMKL # manually commented out
#[1,] -4.645127e-04 0.01371437 # manually commented out
#[2,] -4.678373e-07 1.53954741 # manually commented out
#[3,] -2.593875e-07 0.10017806 # manually commented out
#[4,] -2.701999e-07 0.08378585 # manually commented out
# fun.RMFMKL.lm(fake.dat) # manually commented out

gldvec <- fun.RPRS.lm(fake.dat) # "RPRS" is approx. lmomco
gldvec[2] <- 1/gldvec[2] # inversion of the 2nd parameter
gldex <- vec2par(gldvec, type="gld") # parameters for lmomco

The exploration of GLDEX capabilities continues in example 9–7 . This example uses
the lmomco package to compute the Generalized Lambda parameters. The output shows
the pargld() function making various attempts that originate from within several dis-
tinct parameter regions, which are throughly described by Karian and Dudewicz (2000).
The chosen solution, by small error in {τ3, τ4} space and smallest∆τ5, is GLD(−0.0108,
7.0158, 0.0899, 0.0955). Close inspection shows that GLD(0.0782, 2.2597, 4.8869, 4.1421)
might also be appropriate because this fit also has the smallest error in {τ3, τ4} space and
provides a solution that also is not much worse in terms of∆τ5. These two solutions are
set into the lmomco1 and lmomco2 variables of example 9–8 . Readers are asked to con-
sult example 11–20 on page 332 and associated discussion for more details concerning
multiple Generalized Lambda solutions.

9–7
PARgld <- pargld(lmoms(fake.dat))

print(PARgld) # some editing for space has been done
$type
[1] "gld"
$para

xi alpha kappa h
-0.01076771 7.01578127 0.08985130 0.09553745
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$delTau5
[1] 0.009355544
$error
[1] 9.619003e-08
$source
[1] "pargld"
$rest

xi alpha kappa h delTau5 error
1 -0.011357 7.078270 0.088893 0.094619 0.009394 1.520184e-10
2 0.078243 2.259686 4.886910 4.142094 0.014976 6.740724e-11
3 0.078250 2.259649 4.886804 4.141916 0.014976 6.700292e-13

Example 9–8 , after setting the two solutions for the Generalized Lambda from the
lmomco package, creates a QDF plot shown in figure 9.4. The figure shows the simulated
data values and the preferred solution by the pargld() function in lmomco1 as the solid
thick line. The solid thin line is the alternative solution in lmomco2 appears slightly less
favorable. Finally, the solution from the fun.RPRS.lm() function is drawn as the dashed
line. The example demonstrates consistency between the lmomco and GLDEX packages.

9–8
lmomco1 <- vec2par(c(-0.01076771, 7.01578127,

0.08985130, 0.09553745), type="gld")
lmomco2 <- vec2par(c(0.078250, 2.259649,

4.886804, 4.141916), type="gld")
F <- seq(.01,.99, by=.01)
#pdf("gldex_norm.pdf")
plot(pp(fake.dat),sort(fake.dat), pch=16, cex=0.75, col=8,

xlab="NONEXCEEDANCE PROBABILITY",
ylab="QUANTILE")

lines(F, qlmomco(F, lmomco1), lwd=3)
lines(F, qlmomco(F, lmomco2), lwd=1)
lines(F, qlmomco(F, gldex), lty=2)
#dev.off()

J.

Example 9–9 shows for κgld = 0 that the Generalized Lambda and Generalized Pareto
are equivalent.

9–9
qlmomco(c(0.25,0.75), vec2par(c(100,30, 0.4), type="gpa"))
[1] 108.1524 131.9238
qlmomco(c(0.25,0.75), vec2par(c(100,30/0.4,0,0.4), type="gld"))
[1] 108.1524 131.9238

J
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Figure 9.4. Simulated standard Normal distribution for n = 500 and three fitted Generalized
Lambda distributions using algorithms of the GLDEX and lmomco packages from example 9–8.
The two solid lines are from lmomco and the dashed line is from GLDEX.

9.2.3 Trimmed Generalized Lambda Distribution

The Trimmed Generalized Lambda distribution (Asquith, 2007) is a trimmed version of
the Generalized Lambda presented in the previous section. The Trimmed Generalized
Lambda is defined by Asquith (2007) in terms of the symmetrically t = 1 trimmed
TL-moments.However, extension of the TL-moments to other and asymmetrical trimming
is made for this dissertation (see eq. (9.37)). Partial motivation for a Trimmed Generalized
Lambda is to provide a Generalized Lambda capable of reliably representing the Cauchy
and potentially useful for experimentation with TL-moments in general. A Generalized
Lambda fit to the TL-moments has been fit by the method of TL-moments.

DISTRIBUTION FUNCTIONS

The distribution functions of the Trimmed Generalized Lambda are the same as those
for the Generalized Lambda so reference to Section 9.2.2 is made. The extended listings of
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the TL-moments are shown for t = 1 symmetrical trimming. The first two TL-moments
(λ(1)1 and λ(1)2 ) of the Generalized Lambda are

λ
(1)
1 = ξ + 6α

(
1

(κ+ 3)(κ+ 2)
− 1

(h+ 3)(h+ 2)

)
(9.25)

λ
(1)
2 = 6α

(
κ

(κ+ 4)(κ+ 3)(κ+ 2)
+

h

(h+ 4)(h+ 3)(h+ 2)

)
(9.26)

The third TL-moment (λ(1)3 ) of the Trimmed Generalized Lambda is

K
λ
(1)
3

=
κ(κ− 1)

(κ+ 5)(κ+ 4)(κ+ 3)(κ+ 2)

H
λ
(1)
3

=
h(h− 1)

(h+ 5)(h+ 4)(h+ 3)(h+ 2)

λ
(1)
3 =

20

3
α(K

λ
(1)
3
−H

λ
(1)
3

) (9.27)

The fourth TL-moment (λ(1)4 ) of the Trimmed Generalized Lambda is

K
λ
(1)
4

=
κ(κ− 2)(κ− 1)

(κ+ 6)(κ+ 5)(κ+ 4)(κ+ 3)(κ+ 2)

H
λ
(1)
4

=
h(h− 2)(h− 1)

(h+ 6)(h+ 5)(h+ 4)(h+ 3)(h+ 2)

λ
(1)
4 =

30

4
α(K

λ
(1)
4

+H
λ
(1)
4

) (9.28)

The fifth TL-moment (λ(1)5 ) of the Trimmed Generalized Lambda is

K
λ
(1)
5

=
κ(κ− 3)(κ− 2)(κ− 1)

(κ+ 7)(κ+ 7)(κ+ 6)(κ+ 5)(κ+ 4)(κ+ 3)(κ+ 2)

H
λ
(1)
5

=
h(h− 3)(h− 2)(h− 1)

(h+ 7)(h+ 6)(h+ 5)(h+ 4)(h+ 3)(h+ 2)

λ
(1)
5 =

42

5
α(K

λ
(1)
5
−H

λ
(1)
5

) (9.29)
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The sixth TL-moment (λ(1)6 ) of the Trimmed Generalized Lambda is

K
λ
(1)
6

=
κ(κ− 4)(κ− 3)(κ− 2)(κ− 1)

(κ+ 8)(κ+ 7)(κ+ 6)(κ+ 5)(κ+ 4)(κ+ 3)(κ+ 2)

H
λ
(1)
6

=
h(h− 4)(h− 3)(h− 2)(h− 1)

(h+ 8)(h+ 7)(h+ 6)(h+ 5)(h+ 4)(h+ 3)(h+ 2)

λ
(1)
6 =

56

6
α(K

λ
(1)
6

+H
λ
(1)
6

) (9.30)

Let Lλ(1) be defined as follows:

Lλ(1) = κ(h+ 4)(h+ 3)(h+ 2) + h(κ+ 4)(κ+ 3)(κ+ 2) (9.31)

The TL-moment ratio τ (1)3 of the Trimmed Generalized Lambda is

K
τ
(1)
3

= κ(κ− 1)(h+ 5)(h+ 4)(h+ 3)(h+ 2)

H
τ
(1)
3

= h(h− 1)(κ+ 5)(κ+ 4)(κ+ 3)(κ+ 2)

τ
(1)
3 =

10

9

( K
τ
(1)
3
−H

τ
(1)
3

(κ+ 5)(h+ 5)Lλ(1)

)
(9.32)

The TL-moment ratio τ (1)4 of the Trimmed Generalized Lambda is

K
τ
(1)
4

= κ(κ− 2)(κ− 1)(h+ 6)(h+ 5)(h+ 4)(h+ 3)(h+ 2)
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τ
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)
(9.33)

The TL-moment ratio τ (1)5 of the Trimmed Generalized Lambda is

K1

τ
(1)
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= κ(κ− 3)(κ− 2)(κ− 1)
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(9.34)
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The TL-moment ratio τ (1)6 of the Trimmed Generalized Lambda is
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(9.35)

Finally, these t = 1 TL-moments are potentially defined for

κ > −2 and h > −2 (9.36)

As with the Generalized Lambda distribution, there are no simple expressions for the
parameters in terms of the TL-moments. Numerical methods must be employed and mul-
tiple solutions in different regions of {κ, h}-space are common.

Finally, for this dissertation, the author has derived the following general expression (a
special situation for r = 1 exists) for the L-moments and TL-moments of the Generalized
Lambda. It is fitting to include it within this section.

λ(t1,t2)r = α(r−1)(r + t1 + t2)
r−1∑
j=0

(−1)r
(
r − 1

j

)(
r + t1 + t2 − 1

r + t1 − j − 1

)
×(

Γ(κ+ r + t1 − j)Γ(t2 + j + 1)

Γ(κ+ r + t1 + t2 + 1)
− Γ(r + t1 − j)Γ(h+ t2 + j + 1)

Γ(h+ r + t1 + t2 + 1)

)
(9.37)

where for the special condition of r = 1, the mean is

mean = ξ + λ
(t1,t2)
1 (9.38)

Inspection of the Γ( ) arguments, which must be > 0, in eq. (9.37) shows that

κ > −(1 + t1) and h > −(1 + t2) (9.39)
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Using R Using R

The Trimmed Generalized Lambda distribution is demonstrated by comparison to the
Cauchy in example 9–10 . In the example, the location and scale parameters of the Cauchy
are set respectively in myloc and myscal. A sample size of n = 300 is set for simulation
by the rcauchy() function. The sample TL-moments from the random sample in fake.
dat are computed the byTLmoms() function, and the lmomcoparameter lists (see page 163
and ex. 7–1 ) for the two distributions are respectively set in PARcau and PARgld by the
parcau() and parTLgld() functions.

9–10
myloc <- 3000; myscal <- 40000; n <- 300
set.seed(10) # see comments about random seed in text
fake.dat <- rcauchy(n, location=myloc, scale=myscal)
TLlmr <- TLmoms(fake.dat, trim=1)
PARcau <- parcau(TLlmr)
PARgld <- parTLgld(TLlmr, eps=1e-3, verbose=TRUE)

The demonstration continues in example 9–11 in which two vectors of quantiles for
each distribution are set in x.cau and x.gld by the quacau() and quagld() func-
tions. The PDFs of the distributions are subsequently computed by the pdfcau() and
pdfgld() functions and are shown in figure 9.5.

9–11
F <- seq(0.1,0.9, by=0.01)
x.cau <- quacau(F,PARcau)
x.gld <- quagld(F,PARgld)
#pdf("TLgldcau.pdf")
plot( x.cau, pdfcau(x.cau,PARcau), type="l")
lines(x.gld, pdfgld(x.gld,PARgld), lty=2)
legend(0,1e-6,c("TL-moment fitted Cauchy",

"TL-moment fitted GLD"),
lty=c(1,2), box.lty=0, bty="n", xjust=0.5, yjust=0)

#dev.off()

The figure shows general mimicry of the Cauchy by the Generalized Lambda. However,
the scale of the extremely heavy-tailed Cauchy is large enough to cause solution diffi-
culties with the Generalized Lambda. Readers are asked to repeat examples 9–10 and
example 9–11 with set.seed(1) and a substantial departure from the Cauchy will be
seen. Experimentation with the sample size n is also advised. J
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Figure 9.5. Comparison of PDF of Cauchy and Generalized Lambda distributions fit to 300 ran-
dom samples of CAU(3000, 40000) by method of TL-moments from example 9–11

9.2.4 Wakeby Distribution

The Wakeby distribution (Houghton, 1978; Landwehr and others, 1979a) is a wildly
flexible distribution because it has five parameters: ξ (location), α (scale1), β (shape1),
γ (scale2), and δ (shape2). The distribution is attractive because it is fit to four or five
L-moments depending on whether ξ is either known or unknown. The Wakeby distribu-
tion has the following properties as identified by Hosking andWallis (1997, p. 205), which
make the Wakeby useful as a tool for advanced distributional analysis:

1. The Wakeby distribution, similarly to the Kappa, can mimic the shapes or even
subsume many of the skewed distributions described herein, including the
Generalized Extreme Value, Generalized Normal, and Pearson Type III;

2. The Wakeby distribution is particularly useful for simulation to study the properties of
simpler distributions and for the study of distribution-form sensitivity during the
study of a problem;
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3. The Wakeby can acquire a very heavy upper tail, much like the Generalized Lambda
(greater τ4 values than can be acquired by the Kappa) and thus can generate large
outliers; and

4. The ξ parameter represents the lower bounds of the Wakeby. For some data sets,
imposition of a lower bound can be useful, but the Wakeby is readily solved if the
lower bounds is unknown.

The Hosking and Wallis (1997) algorithm for Wakeby parameter estimation, which is
used by the lmomco package, fits a Generalized Pareto distribution for some combinations
of L-moments that would otherwise provide parameters that are inconsistent with con-
straints listed below. Although theWakeby is flexible, according to the author’s experience
with hydrologic data sets, the Wakeby often cannot be fit in practice to a nontrivial num-
ber of data sets (well at least data sets of Texas hydrology). However, when pooled or
regional mean or weighted mean L-moments are used (see Section 11.1.2, ex. 11–7 ), such
L-moments generally can be used to estimate Wakeby parameters.

DISTRIBUTION FUNCTIONS

The distribution functions of the Wakeby having parameters ξ (location), α (scale1),
γ (scale2), β (shape1), δ (shape2) are

f(x) = α(1− F )β−1 + γ(1− F )−δ−1 (9.40)

F (x) has no explicit analytical form

x(F ) = ξ +
α

β
[1− (1− F )β]− γ

δ
[1− (1− F )−δ] (9.41)

The constraints of the Wakeby parameters are:

β + δ > 0 or β = γ = δ = 0

if α = 0 then β = 0

if γ = 0 then δ = 0

γ ≥ 0 and α + γ ≥ 0
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The range of the distribution is ξ ≤ x ≤ xU where the upper limit is

xU =

∞ if δ ≥ 0 and γ > 0

ξ + α/β − γ/δ if δ < 0 or γ = 0
(9.42)

The L-moments for r ≤ 3 are defined for δ < 1

λ1 = ξ +
α

(1 + β)
+

γ

(1− δ)
(9.43)

λ2 =
α

(1 + β)(2 + β)
+

γ

(1− δ)(2− δ)
(9.44)

λ3 =
α(1− β)

(1 + β)(2 + β)(3 + β)
+

γ(1 + δ)

(1− δ)(2− δ)(3− δ)
(9.45)

and the L-moments for r > 3 are

λ4 =
α(1− β)(2− β)

(1 + β)(2 + β)(3 + β)(4 + β)
+

γ(1 + δ)(2 + δ)

(1− δ)(2− δ)(3− δ)(4− δ)
(9.46)

λ5 =
α(1− β)(2− β)(3− β)

(1 + β)(2 + β)(3 + β)(4 + β)(5 + β)
+

γ(1 + δ)(2 + δ)(3 + δ)

(1− δ)(2− δ)(3− δ)(4− δ)(5− δ)
(9.47)

The following algorithm can be used for computation of the parameters in terms of the
L-moments. If ξ (lower bounds) is unknown, let

N1 = 3λ2 − 25λ3 + 32λ4 (9.48)

N2 = −3λ2 + 5λ3 + 8λ4 (9.49)

N3 = 3λ2 + 5λ3 + 2λ4 (9.50)

and

C1 = 7λ2 − 85λ3 + 203λ4 − 125λ5 (9.51)

C2 = −7λ2 + 25λ3 + 7λ4 − 25λ5 (9.52)

C3 = 7λ2 + 5λ3 − 7λ4 − 5λ5 (9.53)

The parameters β and −δ are the larger and smaller roots, respectively, of the quadratic
equation
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(N2C3 −N3C2)z
2 + (N1C3 −N3C1)z + (N1C2 −N2C1) = 0 (9.54)

and

α =
(1 + β)(2 + β)(3 + β)× [(1 + δ)λ2 − (3− δ)λ3]

4(β + δ)
(9.55)

γ =
−(1− δ)(2− δ)(3− δ)× [(1− β)λ2 − (3 + β)λ3]

4(β + δ)
(9.56)

ξ = λ1 −
α

(1 + β)
− γ

(1− δ)
(9.57)

If ξ is known, assume without loss of generality that ξ = 0, let

N1 = 4λ1 − 11λ2 + 9λ3 (9.58)

N2 = −λ2 + 3λ3 (9.59)

N3 = λ2 + λ3 (9.60)

and

C1 = 10λ1 − 29λ2 + 35λ3 − 16λ4 (9.61)

C2 = −λ2 + 5λ3 − 4λ4 (9.62)

C3 = λ2 − λ4 (9.63)

Then as before, β and−δ are the larger and smaller roots of eq. (9.54) and

α =
(1 + β)(2 + β)× [λ1 − (2− δ)λ2]

(β + δ)
(9.64)

γ =
−(1− δ)(2− δ)× [λ1 − (2 + β)λ2]

(β + δ)
(9.65)

Using R Using R

For a demonstration of the Wakeby distribution, a Wakeby is defined with a λ1 =

0, λ2 = 1/
√
π, and τ4 = 0.1226, which are L-moments consistent with those of the

standard Normal distribution. Such a Wakeby is defined in example 9–12 . The example
also sets up limits for τ3 and τ5. These two L-moments describe successive asymmetry of
the distribution.
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9–12
F <- seq(0.001,0.999, by=0.001) # useful nonexceedance values
L1 <- 0; L2 <- 1/sqrt(pi); T4 <- 0.1226 # consistent with

# standard Normal distribution

t3edge <- 0.7 # upper limit
t3range <- t3edge - -t3edge # mirrored limits
T3 <- seq(-t3edge,t3edge, by=0.05)

t5edge <- 0.1 # upper limit
t5range <- t5edge - -t5edge # mirrored limits
T5 <- seq(-t5edge,t5edge, by=0.05)

nowak <- 0 # number of Wakeby’s fit
nogpa <- 0 # number of Generalized Pareto’s fit instead

The demonstration continues in example 9–13 by calling an effectively empty plot
with proper limits. Nested for() loops are then sweep through τ3 and τ4 between the
respective limits of±0.7 and±0.1, and plot theWakeby for these L-moments in figure 9.6.
The example skips invalid combinations of the L-moments, and the warnings normally
produced by are.lmom.valid() are suppressed using the options() function.

9–13
ops <- options(warn = -1) # save options, and turn warnings off
#pdf("wakskewness_sweep.pdf", version="1.4")
plot(c(),c(), xlim=c(-3,3), ylim=c(-5,5),

xlab="STANDARD NORMAL DEVIATE",
ylab="QUANTILE") # empty plot with good limits

for(t3 in T3) {
for(t5 in T5) {

lmr <- vec2lmom(c(L1,L2,t3,T4,t5)) # set the L-moments
if(! are.lmom.valid(lmr)) next # skip if they are invalid
wak <- parwak(lmr) # compute Wakeby parameters
cat(c("tau3 =", t3, " and tau5 =", t5, "\n"))

if(wak$ifail == 2) { # GPA fit instead, red lines
lines(qnorm(F),quawak(F,wak),

col=rgb(1,0,0,0.3), lwd=0.5, lty=2)
nogpa <- nogpa + 1 # count of Generalized Pareto fits
cat(" Generalized Pareto fit\n")
next

}

r <- 0 # change colors according to tau3 and tau5 vals
g <- (t3edge - t3)/t3range # less green, tau3 increasing
b <- (t5 - -t5edge)/t5range # more blue, tau5 increasing
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lines(qnorm(F),quawak(F,wak), lwd=1,
col=rgb(r,g,b, 0.8))

nowak <- nowak + 1 # count of Wakeby fits
cat(" Wakeby fit\n")
Sys.sleep(1) # to pause before moving on to next tau5

}
Sys.sleep(2) # to pause before moving on to next tau3

}
legend(-3,4,c("Generalized Pareto distribution",

"Wakeby distribution"),
lwd=c(0.5,1), lty=c(2,1))

#dev.off()
options(ops) # restore the options, warnings turned back on

# Now show how many of each distribution was returned by the
# Wakeby parameter estimation algorithm of parwak()
cat(c("No. Wakeby=",nowak," and no. GPA=",nogpa,"\n"))
No. Wakeby= 196 and no. GPA= 222
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Generalized Pareto distribution
Wakeby distribution

Figure 9.6. Comparison of Wakeby distributions (and Generalized Pareto, if applicable, dashed
lines) for λ1, λ2, and τ4 consistent with standard Normal distribution and τ3 and τ5 swept
through±0.7 and±0.1, respectively from example 9–13. Decreasing green is equivalent to
increasing τ3, and increasing blue is equivalent to τ5 increasing.
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The figure shows the substantial range in distribution geometry that can be represented
by the Wakeby as computed by the algorithm in parwak(). The color of each Wakeby
distribution changes according to the values for τ3 and τ5. Unfortunately, the constraints
of grey-scale printing limit the effectiveness of the figure. Decreasing green is equivalent
to increasing τ3, and increasing blue is equivalent to τ5 increasing. Finally, the counts of
Wakeby and Generalized Pareto fits are shown in the last line of example 9–13 . J

The Wakeby distribution clearly has some complex shapes, and the PDF of the distri-
bution aids in visualization. In example 9–14 , consistency with select L-moments of the
standardNormal distribution (λ1 = 0, λ2 = π−1/2, and τ4 = 0.1226) is set up as was done
in example 9–12 . Next, a function myWAK() is created to plot PDFs for values of τ3 and
τ5 that are passed as arguments in t3 and t5, respectively. The function uses cdfwak(),
check.pdf(), and quawak() functions.

9–14
F <- seq(0.001,0.999, by=0.001) # useful nonexceedance values
L1 <- 0; L2 <- 1/sqrt(pi); T4 <- 0.1226 # consistent with

# standard Normal distribution

"myWAK" <- function(t3,t5) {
lmr <- vec2lmom(c(L1,L2,t3,T4,t5)) # set the L-moments
if(! are.lmom.valid(lmr)) { # test the validity

warning("L-moments are not valid")
return(1)

}
PARwak <- parwak(lmr) # compute Wakeby parameters
mydis <- NULL # which distribution chosen by the algorithm
if(PARwak$ifail == 0) {

mydis <- "Wakeby fit"
}
else if(PARwak$ifail == 1) {

mydis <- "Wakeby fit with xi = 0"
}
else if(PARwak$ifail == 2) {

mydis <- "Generalized Pareto fit instead"
}
else { return(1) }
mystr <- paste("Tau3=",t3," Tau5=",t5,sep=" ")
# Perform the plotting operations
layout(matrix(1:2,nrow=2)) # two plots, top and bottom
x <- quawak(F,PARwak)
plot(x, cdfwak(x,PARwak), type="l", lwd=2,

col=PARwak$ifail+1, lty=PARwak$ifail+1,
xlab="x", ylab="F")

mtext(mydis)
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check.pdf(pdfwak, PARwak, plot=TRUE)
lines(x,pdfwak(x,PARwak), lty=2, col=1, lwd=5)
mtext(mystr)
return(PARwak) # return the parameters in case needed

}

The myWAK() function is called six separate times in example 9–15 and the results
are shown in figures 9.7–9.12. The parameters of the Wakeby are returned with each call
to myWAK(), but these are not shown in the example. The thick dashed line on the PDF
(bottom plot) is the PDF of theWakeby superimposed on the results of the check.pdf()
function. For these six figures, the Generalized Pareto is shown only in figure 9.11 because
the Wakeby could not be fit to τ3 = 0.1 and τ5 = 0.5.

9–15
myWAK( 0, 0); myWAK( 0.1, 0)
myWAK(-0.1, 0); myWAK( 0.1, 0.1)
myWAK( 0.1, 0.5); myWAK(-0.2, -0.1)

The figures follow on the next three pages. J
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Figure 9.7. Comparison of QDF and PDF of Wakeby distribution (or Generalized Pareto, if appli-
cable) for λ1, λ2, and τ4 consistent with standard Normal distribution and τ3 = 0 and τ5 = 0
from example 9–15
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Figure 9.8. Comparison of QDF and PDF of Wakeby distribution (or Generalized Pareto, if applica-
ble) for λ1, λ2, and τ4 consistent with standard Normal distribution and τ3 = 0.1 and τ5 = 0
from example 9–15
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Figure 9.9. Comparison of QDF and PDF of Wakeby distribution (or Generalized Pareto, if applica-
ble) for λ1, λ2, and τ4 consistent with standard Normal distribution and τ3 = −0.1 and τ5 = 0
from example 9–15
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Figure 9.10. Comparison of QDF and PDF of Wakeby distribution (or Generalized Pareto, if appli-
cable) for λ1, λ2, and τ4 consistent with standard Normal distribution and τ3 = 0.1 and
τ5 = 0.1 from example 9–15
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Figure 9.11. Comparison of QDF and PDF of Wakeby distribution (or Generalized Pareto, if appli-
cable) for λ1, λ2, and τ4 consistent with standard Normal distribution and τ3 = 0.1 and
τ5 = 0.5 from example 9–15
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Figure 9.12. Comparison of QDF and PDF of Wakeby distribution (or Generalized Pareto, if appli-
cable) for λ1, λ2, and τ4 consistent with standard Normal distribution and τ3 = −0.2 and
τ5 = −0.1 from example 9–15
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9.3 Special Demonstration of Distributions

The distributions supported by the lmomco package are extensively documented and
demonstrated in Chapters 7–9. A special demonstration of most of these distributions
is now appropriate.

The shapes are compared to the PDF for twelve distributions fit to the same L-moments.
Example 9–16 shows some suggested steps how the comparison can be effectively done
with the function nomenclature of the lmomco package. The example begins by speci-
fying some L-moments using the now familiar construct with the vec2lmom() func-
tion. A full listing of distribution abbreviations for the lmomco package is returned by the
dist.list() function. A for() loop is used to iterate through the distribution list and
determine the global end points of the quantiles so that for later plotting purposes the
horizontal axis for each PDF will have the same extent. Seven distributions are left off—
the Cauchy because TL-moments are needed, the Generalized Lambda to avoid treatment
for multiple solutions, Kumaraswamy to avoid a nonconvergence error and log-Normal3,
Rayleigh, Reverse Gumbel, and Rice because four more distributions would simply com-
press the graphical output in figure 9.13 too much for effective presentation.

9–16
L1 <- 900; L2 <- 500; T3 <- 0.1; T4 <- -0.1; T5 <- 0.04
lmr <- vec2lmom(c(L1,L2,T3,T4,T5))
dist <- dist.list() # return list of dist. abbreviations
dist <- dist[dist != "cau" & dist != "gld" &

dist != "kur" & dist != "ln3" &
dist != "ray" & dist != "revgum" &
dist != "rice"]

F <- nonexceeds() # convenient values
my.min <- Inf; my.max <- -Inf # for global end points
for(d in dist) { # used to find global end points

my.para <- lmom2par(lmr, type=d)
x <- qlmomco(F,my.para)
my.min <- min(x,my.min); my.max <- max(x,my.max)

}

The demonstration continues in example 9–17 with similar structure to example 9–16

but with the addition of plotting operations. The results are shown in figure 9.13. For
the example the qlmomco() and dlmomco() functions respectively provide the QDF
and PDF of the respectively distribution in the variable d. A previously not identified
function, prettydist(), returns the corresponding full name for the distribution so
that the individual plots can be labeled.
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9–17
#pdf("alldist.pdf")
n <- length(dist) # how long is that list?
layout(matrix(1:n, ncol=n%/%4)) # at time of writing---three cols
for(d in dist) {

my.para <- lmom2par(lmr, type=d)
x <- qlmomco(F,my.para)
plot(x, dlmomco(x,my.para), type="l", ylab = "DENSITY",

xlim=c(my.min,my.max))
mtext(prettydist(d)) # place distribution name above plot

}
#dev.off()

Inspection of the figure suggests that the PDF of the Generalized Pareto and Wakeby
distributions are similar. Actually, they are identical. TheWakeby algorithm could not find
a solution and reverted to that for the Generalized Pareto. Therefore, the plot is technically
mislabeled in the figure. The Generalized Pareto looks so different from the other five
three-parameter distributions because at τ3 = 0.1, the Generalized Pareto has much less
τ4 than the other distributions. Readers are guided to figure 10.6 in the context of τ3 and τ4
comparison. Finally, readers might find it informative to experiment with examples 9–16

and 9–17 by changing the τ3, τ4, and τ5 values in T3, T4, and T5, respectively. J

Now, considering τ4 inmore detail, the PDF for the Kappa distribution in figure 9.13 has
considerable distortion on the left and right tails because of extremely large probability
density on the edges (in the tails). Why does the PDF of the Kappa look so different from
the other examples?

Before answering the question, an alternative plot of the PDF is useful and created by
example 9–18 . The results are shown in figure 9.14. The figure clearly provides for better
resolution and shows that numerical singularities do not exist as the lower resolution of
figure 9.13 suggests.

9–18
#pdf("kappdf.pdf")
check.pdf(pdfkap,parkap(lmr), plot=TRUE,

plotlowerF=0.1, plotupperF=0.9)
#dev.off()

Similar plotting of narrower tails, such as provided by the options plotlowerF and
plotupperF to check.pdf(), occasionally is needed for this and other distributions
for effective graphical depiction of the PDF structure for specific combinations of param-
eters. The check.pdf() function thus provides a convenient interface for PDF plotting
purposes.
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Figure 9.13. Comparison of PDF for twelve distributions fit to L-moments from example 9–17

Returning to the answer posed by the earlier question, for the example L-moments here,
the negative τ4 used in the example produces anti-peaking. (There is no central peak or
mode.) This is the effect of τ4 < 0. The other 11 (well 10, considering that the Generalized
Pareto is shown twice) in figure 9.13 all have less than four parameters. As a result, none of
the distributions is actually fit to the specified τ4. Each has its own τ4 of course, but none
can acquire the condition of τ4 < 0. Therefore, the anti-peaking distribution geometry of
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the L-moments in variable lmr in example 9–16 is only mimicked—that is, seen—by the
Kappa distribution. J
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Figure 9.14. Alternative depiction of PDF of Kappa distribution shown in figure 9.13 from exam-
ple 9–18

Finally, to end this section and again using the Kappa distribution, the influence of posi-
tive and negative τ4 and the relation to the peakedness of the distribution is demonstrated.
In example 9–19 , two Kappa distributions with µ = 0, σ = 1, λ2 = σ

√
π, τ3 = 0, and

two τ4 values are plotted in figure 9.15.

9–19
#pdf("kappeak.pdf")
layout(matrix(1:2, ncol=1))
top <- vec2lmom(c(0,1/sqrt(pi),0, 0.01)) # positive L-kurtosis
bot <- vec2lmom(c(0,1/sqrt(pi),0,-0.01)) # negative L-kurtosis
check.pdf(pdfkap,parkap(top), plot=TRUE,

plotlowerF=0.1, plotupperF=0.9)
check.pdf(pdfkap,parkap(bot), plot=TRUE,

plotlowerF=0.1, plotupperF=0.9)
#dev.off()
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The differences in the PDFs are striking, yet figure 9.15 has a pleasant sort of symmetry for
two distributions having τ3 = 0 and equivalent magnitude τ4 that differ in sign. J
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Figure 9.15. Comparison of symmetrical PDFs of two Kappa distributions having positive (top)
and negative (bottom) τ4 values of equivalent magnitude from example example 9–19

9.4 Summary

Four- and more parameter distributions are substantially more flexible than are three-
parameter distributions. The four- and more parameter distributions considered in this
chapter are fit to at least the first four L-moments of the data. Both the lmomco and lmom
packages provide support for the Kappa and Wakeby distributions. The lmomco package
in particular offers the addition of the Generalized Lambda distribution; the Generalized
Lambda can be problematic in practice because multiple solutions can exist. The addi-
tional flexibility of four- and more parameter distributions requires reliable estimation
of at least four L-moments and thus larger samples sizes are required than are needed
for lower-order distributions. The tail shapes of four- and more parameter distributions

295



Texas Tech University,William H. Asquith, May 2011

might provide for more accurate quantile estimation in the far tails provided that sample
sizes are sufficiently large to support reliable τ̂4 and τ̂5 estimation. Conversely, these dis-
tributions might provide for substantially biased quantile estimates in circumstances in
which sample sizes are insufficient to make reliable estimation of distribution parameters.
The 19 examples repeat themes established previously in this dissertation, but some of
the Generalized Lambda and Wakeby examples demonstrate the considerable nuances
of these distributions in practice. Finally, Section 9.3 shows that the high-level functional-
ity of the lmomco package facilitates experimentation with L-moments and distributional
form, and that section effectively closes the content of Chapters 7 and 8.

• The examples for the Kappa distribution consider the distribution of annual peak
streamflow data for a location in Texas that are contained within the lmomco package.
The streamflow exhibits remarkable variability and skewness. The Kappa distribu-
tion is fit to the L-moments and plotted. The Kappa acceptably fits the right tail (the
flood-flow tail and tail of interest). Subsequent examples fit the Generalized Normal
distribution to the L-moments along with the log-Normal. Although not attaining the
quality of fit of the Kappa mostly because of having only three parameters, the Gener-
alized Normal also mimics the geometry of the data. The log-Normal (two parameter)
does not have an acceptable fit—the data possess more curvature than this distribu-
tion can attain.

• The examples for the Generalized Lambda distribution repeat consideration of the
distribution of annual peak streamflow data used for the Kappa examples. The Gen-
eralized Lambda is fit to the L-moments of the data and is plotted along side the
Kappa. The default Generalized Lambda solution returned by a function of lmomco
exhibits excessive flattening in the right tail (again the flood-flow tail and tail of inter-
est). Therefore, a secondary solution is found that more closely matches the Kappa.
The difficulty in using the Generalized Lambda in practice thus is shown.

• The examples for the Trimmed Generalized Lambda distribution demonstrate an
approximation to the Cauchy distribution.

• The examples for the Wakeby distribution are extensive because of the complexity of
the five-parameter version of the Wakeby. Various QDF variations that are departures
from the λ1, λ2, and τ4 of the standard Normal distribution are created by changing
the τ3 and τ5 of the distribution and all plotted on the same figure. The examples
also provide various PDF variations that are departures from an otherwise standard
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Normal distribution. The PDF variations are created by changing the τ3 and τ5 values,
and these PDFs are separately plotted. For one of the PDFs, a Wakeby could not be
fit and the backup fit of the Generalized Pareto is shown instead. So the examples, do
show the fitting of a Generalized Pareto in circumstances in which the Wakeby is not
applicable.
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Chapter 10

L-moment Ratio Diagrams

In this chapter, I present discussion of L-moment ratio diagrams. These diagrams are

extremely useful in application of L-moment statistics because they permit differentiat-

ing between many distributions. The diagrams permit visual description of distribution-

specific interrelations between selected L-moment ratios. The diagrams are commonly

used for ad-hoc selection (a sort of goodness-of-fit) of a distribution from a ensemble of

candidate distributions. The diagrams are quite common in the L-moment literature and

are an important part of exploratory analysis. Compared to other chapters, this chapter

is the most similar to a conventional paper on the topic and should be especially acces-

sible to many readers. This chapter is central to distributional analysis with L-moment

statistics using R.

10.1 Introduction

Probability distributions are distinguished by their formal mathematical definition,
moments, and respective parameter values. As a result, distributions have specific and
generally unique intra-relations (within distribution) between moments and parameters.
As seen in this chapter, the intra-moment relations of L-moments are a convenient and
powerful tool for discriminating between distributional form. The intra-moment relations
also provide a means for ad hoc, yet reliable, judgement of goodness-of-fit, and hence,
the relations guide the process of distribution evaluation and selection from a suite of
candidate distributions.

As a means to guide the selection of a distribution, a convenient graphical construct,
which is termed a moment ratio diagram, provides a visualization of intra-moment rela-
tions. The moment ratio diagram often is used to depict the relation between relative vari-
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ability and skewness (CV versus Ĝ or τ2 versus τ3) or more often the relation between
skewness and kurtosis (K̂ versus Ĝ or τ3 versus τ4). For the purpose of this dissertation,
the focus is on L-moment ratio diagrams as detailed in Hosking (1990), Vogel and Fen-
nessey (1993), Peel and others (2001), and many others, in general, and L-moment ratio
diagrams of τ3 and τ4, in particular. L-moment ratio diagrams of τ3 and τ4 are especially
useful in evaluation of distributional form in a framework that is largely independent of
the location and scale characteristics of the distribution. Such L-moment ratio diagrams
are frequently depicted in contributions to the L-moment literature. The importance of
these diagrams and their variants to L-moment practitioners is hard to overemphasize.
For example, Hosking (2007b) suggests that the L-moment ratio diagram of τ4 and τ6 is
useful for distinguishing between symmetric distributions and a financial application is
seen in Hosking and others (2000) and Kerstens and others (2010).

L-moment ratio diagrams address, but not completely solve, the nontrivial problem
of distribution evaluation and selection of distributional form for arbitrary data. The dia-
grams also provide convenient tools for studying the applicability of selected distributions.
Because distributions have unique points, lines, or regions on an L-moment ratio diagram,
the diagram can be used to evaluate the portion of the {τ3, τ4}-parameter space occupied
by the distribution that is most similar to that of the data. Data often are represented by
samples from different locations, individuals, measurement campaigns, or studies, and
hence form a localized cloud on the diagram.

This chapter describes L-moment ratio diagrams for complete distributions or whole
samples. The diagrams for censored distributions and samples are described in much
literature that includes Hosking (1995) and Zafirakou-Koulouris and others (1998). Such
diagrams are not considered here. Hypothesis testing involving goodness-of-fit also is not
considered here. However, Liou and others (2008) do provide one of relatively few studies
related to quantification of distribution-fit judgement using L-moment ratio diagrams;
Liou and others (2008) provide a few additional citations.

10.2 Assessment of Distribution Form using L-moment Ratio Diagrams

L-moment ratio diagrams are straightforward to use for assessment of distribution form
and are in widespread use for this purpose by L-moment practitioners. In their most com-
mon form, the diagrams depict the relation between τ3 (horizontal axis) and τ4 (vertical
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axis). Although perhaps obtuse at first introduction, the diagram has numerous compo-
nents that will be familiar by the end of this chapter.

The diagrams are effective tools for visualizing the relations between the pair {τ3, τ4} of
a distribution and the locations of the {τ̂3, τ̂4} from samples. The relations or spatial differ-
ences on the diagram help guide the analyst in the selection of distributions. An example
of a well-typeset L-moment ratio diagram, which is derived from Asquith and others
(2006), is shown in figure 10.1. The diagram shows the intra-moment relation between
τ3 and τ4 for selected distributions as well as hundreds of samples from two phenomena
types. Several interpretations of the contents of the figure are possible as shown by the
following discussion.

Two-parameter distributions, when possessing location and scale parameters, have
constant values for both τ3 and τ4 regardless of the values for λ1 and λ2, and such two-
parameter distributions plot as special points on the diagram. For example, the Normal
distribution, which is not plotted in the figure because of the selected horizontal axis
scale, has τ nor3 = 0 and τ nor4 ≈ 0.123 (see Section 7.2.1). Whereas the Exponential distribu-
tion, which is shown in figure 10.1, has {τ exp3 , τ

exp
4 } = {0.333, 0.167}. The two-parameter

Gamma distribution is different because the distribution lacks a location parameter and
does not have constant values for τ3 and τ4. Instead, the Gamma exists along the line of
the Pearson Type III distribution. The Gamma is further discussed later in this chapter.

In contrast to two-parameter distributions, three-parameter distributions, when pos-
sessing location, scale, and shape parameters, trace a unique trajectory or curvilinear path
through the {τ3, τ4}-parameter space of the diagram. The trajectories of four selected
three-parameter distributions are shown in figure 10.1: the Generalized Extreme Value,
Generalized Logistic, Generalized Pareto, and Pearson Type III distributions.

In contrast to three-parameter distributions, distributions with more than one shape
parameter—generally distributions with four or more parameters—cover or occupy a
region or regions of the diagram. The Kappa distribution is such an example, and, for
a given τ3, the Kappa occupies the region below the τ4 of the Generalized Logistic and
above the τ4 of the theoretical limits of the L-moments. The bottom graph in figure 10.1
shows the range of the Kappa by the extent of the line with arrows on both ends. The
Generalized Lambda (Karvanen and Nuutinen, 2008) and Wakeby (Hosking and Wallis,
1997) distributions have more complex parameter spaces and are not easily illustrated.

The L-moment ratio diagram in figure 10.1 also shows individual τ̂3 and τ̂4 values
(the two circle types) computed from real-world data. The L-moment ratio diagram was

300



Texas Tech University,William H. Asquith, May 2011

L-SKEW, DIMENSIONLESSL-
KU

RT
O

SI
S,

 D
IM

EN
SI

O
N

LE
SS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.3
-0.2

0

0.2

0.4

0.6

0.8

L-SKEW, DIMENSIONLESS

L-
KU

RT
O

SI
S,

 D
IM

EN
SI

O
N

LE
SS

0.2 0.3 0.4 0.5 0.6 0.65
0

0.1

0.2

0.3

0.4

0.5

B.

A.

Generalized Logistic

Theo
ret

ica
l L

im
its

Pearson Type III

Generalized Pareto

Generalized Extreme Value

A few data points are outside of theoretical
limits because of very small sample sizes.

L-kurtosis for storm depth
L-kurtosis for storm duration

Range of kappa distribution

Box represents
boundaries of
plot B.

Plot symbols and lines
defined in plot B (bottom).

Exponential

Distribution names

Figure 10.1. High-quality L-moment ratio diagram showing L-skew and L-kurtosis of selected dis-
tribuions and sample values for storm depth and storm duration from Asquith and others (2006)

developed as part of a large-scale study of the statistics of storms throughout eastern New
Mexico, Oklahoma, and Texas (Asquith and others, 2006). For each of 774 locations with
hourly raingages, literally thousands of storms per locationwere extracted, and the sample
L-moments of storm depth and the sample L-moments of storm volume for each location
were computed. The τ̂3 and τ̂4 for storm depth (total depth of rainfall) are plotted in the
figure as open circles, and the τ̂3 and τ̂4 for storm duration are plotted as grey circles.
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Several interpretive observations of the data shown in the diagram (fig. 10.1) can be
made:

1. The top graph shows that both rainfall phenomena have positive skewness and mild
kurtosis;

2. The data have a strong tendency to plot in a relatively restricted portion of the
L-moment ratio diagram. It is important to note that the locations of the raingages
are distributed throughout a large geographic region (on the order of 370,000 square
miles); and

3. The central tendency of τ̂3 and τ̂4 is important. The τ̂3 and τ̂4 for either storm phe-
nomena (storm depth and storm duration) cluster around {τ̂3, τ̂4} = {0.50, 0.27} for
storm depth and {τ̂3, τ̂4} = {0.48, 0.23} for storm duration. These two pairs of τ̂3 and
τ̂4 are derived from Asquith and others (2006, tables 5 and 6). The overlap of the data
clouds and general numerical similarity of the τ̂3 and τ̂4 of the two phenomena sug-
gests that the general asymmetry and shape of the two unknown parent distributions
of distinct phenomena are similar.

Continuing with interpretations of figure 10.1, the Pearson Type III distribution curve
passes close to the {τ3, τ4} pairings for both storm depth and storm duration. Hence, a
conclusion is, should a three-parameter distribution be selected, that the Pearson Type III
would provide a favorable choice for generalized modeling of these rainfall phenomena.
For additional interpretation, the τ̂3 and τ̂4 values are almost universally below the lines
for the Generalized Extreme Value and Generalized Logistic distributions, and the sample
sizes are large enough to judge that τ3 and τ4 are reliably estimated. Both the Generalized
Extreme Value and Generalized Logistic distributions would be poor choices from the
perspective of the regional (geographic) form of the parent distribution. The Generalized
Pareto, although a better choice than either the Generalized Extreme Value or Generalized
Logistic, generally would have τ gpa4 larger than the sample data. An alternative choice over
the Pearson Type III would be the four-parameter Kappa distribution because the Kappa
could match the record-length weighted mean values of τ̂3 and τ̂4. Asquith and others
(2006) concluded that the Kappa distribution is preferable to model the unknown parent
distribution of rainfall depth and duration in their study area.
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Using R Using R

To further illustrate interpretations of L-moment ratio diagrams, numerical experi-
ments are performed using functions from the lmomco package. The demonstration begins
in example 10–1 by specifying the first four L-moments using the vec2lmom() function.
For later reference, primary interest concerns the values for {τ3, τ4} = {0.4, 0.4}. Next,
the parameters are computed using the parXXX() functions (see table 7.4 for a listing)
for three selected distributions: Gamma (gam), Generalized Logistic (glo), and Pearson
Type III (pe3) by the parglo(), parpe3(), and pargam() functions, respectively.

10–1
t3 <- 0.4 # set L-skew
t4 <- 0.4 # set L-kurtosis
lmr <- vec2lmom(c(1000,500,t3,t4)) # create full list of L-

moments
PARgam <- pargam(lmr)
PARglo <- parglo(lmr)
PARpe3 <- parpe3(lmr)

Continuing in example 10–2 , two vectors are created to store sample values τ̂3 and τ̂4.
These vectors are used for subsequent plotting operations in later examples.

10–2
t3gam <- vector(mode = "numeric")
t3glo <- t4glo <- t3pe3 <- t4pe3 <- t4gam <- t3gam

Example 10–3 establishes an arbitrary sample size of n = 20 and performs 50 sim-
ulations of three independent n = 20 drawings from the three distributions by the
rlmomco() function. The nsim=50 simulation size is too small for rigorous numerical
study but is sufficiently large for effective demonstration of key concepts of L-moment
ratio diagrams. The rlmomco() function dispatches n random F values to the appropri-
ate quaXXX() functions (see table 7.3 for a listing). Following each sample drawing for
each distribution, the L-moments are computed by the lmoms() function, and the τ̂3 and
τ̂4 are stored in respective vectors.

10–3
n <- 20; nsim <- 50
for(i in seq(1,nsim)) {

Q <- rlmomco(n,PARgam); tmp <- lmoms(Q)
t3gam[i] <- tmp$ratios[3]; t4gam[i] <- tmp$ratios[4]

Q <- rlmomco(n,PARglo); tmp <- lmoms(Q)
t3glo[i] <- tmp$ratios[3]; t4glo[i] <- tmp$ratios[4]
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Q <- rlmomco(n,PARpe3); tmp <- lmoms(Q)
t3pe3[i] <- tmp$ratios[3]; t4pe3[i] <- tmp$ratios[4]

}

The results of the simulation are plotted finally in figure 10.2 using example 10–4 . In
the example, the plot is initiated, and the {τ̂3, τ̂4} values for Gamma, Generalized Logistic,
and Pearson Type III distributions are plotted as open squares (pch=0), open triangles
(pch=2), and filled circles (pch=16), respectively. For each of the three distributions, the
mean values of the 50 values of τ̂3 and τ̂4 are plotted as the large symbol shapes. The
intersection of the horizontal and vertical lines in the interior of the plot, which are drawn
by the segments() function, cross at the location of the τ3 and τ4 of the population.

10–4
#pdf("lmr1.pdf")
plot(t3pe3,t4pe3, ylim=c(0,0.7), xlim=c(0,0.8), type="n",

xlab="L-SKEW", ylab="L-KURTOSIS")
points(t3gam,t4gam, pch=0)
points(t3glo,t4glo, pch=2)
points(t3pe3,t4pe3, pch=16, col=rgb(0.6,0.6,0.6))
points(mean(t3gam),mean(t4gam),pch=22,bg=rgb(1,1,1), cex=3)
points(mean(t3glo),mean(t4glo),pch=24,bg=rgb(1,1,1), cex=3)
points(mean(t3pe3),mean(t4pe3),pch=21,bg=rgb(.6,.6,.6),cex=3)
segments(t3,-1, t3,1); segments(-1,t4, 1,t4)
#dev.off()

Considerable interpretation of figure 10.2 can be made. Although substantial overlap
is present, the points in the figure show differences in general plotting region, which are
dependent on distribution type. For example, the data points for the Pearson Type III
distribution (filled circles) generally plot as a cluster or otherwise define a region with τ4
values less than τ̂4 from the other two distributions. J

To further illustrate the interpretation of L-moment ratio diagrams, the sample size is
increased by an order of magnitude to n = 200, and examples 10–3 and 10–4 rerun. The
results are shown in figure 10.3. The larger sample size reduces sample variability, and
therefore, the data points in figure 10.3 define more visually distinct or separable regions
that have more consistency with the trajectory of each parent distribution. These regions
are identifiable as separate—this is a major feature of the diagrams. The regions show that
the three distributions (and others) are readily distinguished on L-moment ratio diagrams
of τ3 and τ4. The diagrams hence can guide analysts towards a distribution that might be
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most appropriate or at a minimum suggest less appropriate distributions to model the
phenomena under study.

Because each is a three-parameter distribution, the Generalized Logistic and Pearson
Type III distributions are each fit to the same τ3 = 0.4 (the vertical line), but each is
not fit to the given τ4 = 0.4 (the horizontal line). As a result, the mean τ̂3 of these two
distributions (large triangle and filled circle, respectively) should plot reasonably close to
the τ3 = 0.4 line. Because the τ4 of the Generalized Logistic distribution is intrinsically
larger than that of the Pearson Type III, the large triangle is plotted above the large filled
circle—that is, the large triangle (Generalized Logistic) is more L-kurtotic than the large
filled circle (Pearson Type III).

The two-parameter Gamma distribution conversely cannot be fit to τ3 = 0.4 because
of even higher moment order and obviously not τ4 = 0.4. The Gamma distribution only
is fit to λ1 = 1,000 and λ2 = 500 as provided by example 10–1 . In this situation, the
fitted Gamma has a τ gam3 that is substantially less than the population τ3. The Gamma and
Pearson Type III distributions are closely related distributions. It is not a coincidence that
the large square plots in the region where it does because the Gamma distribution exists
along the Pearson Type III trajectory of {τ pe33 , τ

pe3
4 }. Both the Gamma and Pearson Type

III distributions are further discussed in the next section. J

10.3 Construction of L-moment Ratio Diagrams

This section addresses the construction of L-moment ratio diagrams using features of the
lmomco package. L-moment ratio diagrams of τ3 and τ4 are readily constructed using a
combination of distribution-specific tabulated values, analytical expressions, or numerical
approximations.

Hosking and Wallis (1997, p. 208) report polynomial approximations for the charac-
teristic {τ3, τ4} relations for construction of L-moment ratio diagrams. The polynomial
approximations are of the form

τ4 =
8∑
j=0

Aj τ3
j (10.1)

where the coefficientsAj for selected three parameter distributions are listed in table 10.1.
Hosking and Wallis (1997, p. 208) also report that the approximations produce τ4 values
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Figure 10.2. L-moment ratio diagram showing 50 sample simulations of L-skew and L-kurtosis for
n = 20 samples drawn from three distributions from example 10–4

within 0.0005 over the range−0.9 ≤ τ3 ≤ 0.9, except for the Generalized Extreme Value
distribution, for which the 0.0005 accuracy is available only when−0.6 ≤ τ3 ≤ 0.9.

Using R Using R

The lmrdia() function provides characteristic {τ3, τ4} relations as either constants or
matrices for common distributions used in L-moment-based distributional analysis. The
distributions supported by lmrdia(), identified by the lmomco abbreviation style and
considered in this dissertation, include exp, gev, glo, gpa, gum, gno (log-normal), nor,
pe3, and ray. For example, to access the characteristic {τ3, τ4} pairings for the Gumbel
distribution, example 10–5 can be used.

10–5
lmrdia <- lmrdia() # extract ordinates for LMR diagrams
lmrdia$gum[1,] # display values for the Gumbel distribution
[1] 0.169925 0.150375
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Figure 10.3. L-moment ratio diagram showing 50 sample simulations of L-skew and L-kurtosis for
n = 200 samples drawn from three distributions based on examples 10–3 and 10–4

Table 10.1. Coefficients for polynomial approximations of L-kurtosis as a function of L-skew for
selected distributions

[ GEV, Generalized Extreme Value distribution; GLO, Generalized Logistic distribution; GNO,
Generalized Normal distribution; PE3, Pearson Type III distribution; --, implies a coefficient of
zero ]

GEV GLO GNO GPA PE3
A0 0.10701 0.16667 0.12282 0. 0.12240

A1 .11090 -- -- .20196 --
A2 .84838 .83333 .77518 .95924 .30115

A3 −.06669 -- -- −.20096 --
A4 .00567 -- .12279 .04061 .95812

A5 −.04208 -- -- -- --
A6 .03763 -- −.13638 -- −.57488

A7 -- -- -- -- --
A8 -- -- .11368 -- .19383
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For the Gumbel distribution, these values are {τ gum3 , τ
gum
4 } = {0.17, 0.15} as shown.

The lmrdia() function also returns the theoretical limits of τ3 and τ4 in the limits field,
which are accessed using lmrdia$limits.

In order to draw the trajectories for several of the distributions, the lmrdia() func-
tion uses (1) the polynomial approximations in table 10.1 for the Generalized Normal
and Pearson Type III distributions; (2) analytical expressions for the Generalized Logistic
distribution by eq. (8.25) and the Generalized Pareto distribution by eq. (8.58); and (3) the
iteration of parameter κ through eqs. (8.10) and (8.11) for the Generalized Extreme Value
distribution. J

Considering again figure 10.3 and the examples from the previous section, if the fol-
lowing three lines in example 10–6 are added to the end of example 10–4 and executed
after examples 10–1 – 10–3 , then the trajectories of τ3 and τ4 for the Pearson Type III and
the Generalized Logistic distributions become superimposed on the plot. The results are
shown in figure 10.4. The Generalized Logistic is shown by the thin line and the Pearson
Type III by the thick line.

10–6
lmrdia <- lmrdia() # data structure
lines(lmrdia$glo[,1],lmrdia$glo[,2]) # thin line
lines(lmrdia$pe3[,1],lmrdia$pe3[,2], lwd=3) # thick line

The Gamma distribution is closely related to the Pearson Type III; the Gamma can
acquire the same τ3 and τ4 combinations as the Pearson Type III. However, a fitted Gamma
distribution will not plot at the same τ3 and τ4 values as a fitted Pearson Type III for a
given data set (L-moment combination)—the two distributions are different. The Gamma
has two parameters and the Pearson Type III has three. The large square (the mean of the
{τ gam3 , τ

gam
4 } loci) in figure 10.4 thus is plotted effectively on the Pearson Type III curve

and will plot on the curve for sufficiently large sample sizes. J

The general construction of an L-moment ratio diagram is made in example 10–7 . The
resulting diagram is shown in figure 10.5. The plotlmrdia() function provides a high-
level interface for plotting L-moment ratio diagrams. The diagram shown in figure 10.5 is
a “full perspective” diagram because the entire range of τ3 and τ4 is depicted. The range
of τ3 is−1 < τ3 < 1 (eq. (6.28)), and the “Theoretical limits” line demarks the base of the
1
4
(5τ3

2 − 1) ≤ τ4 < 1 relation (eq. (6.29)). The figure is generated with selected colors for
some of the lines.
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Figure 10.4. L-moment ratio diagram showing 50 sample simulations of L-skew and L-kurtosis
values for n = 200 samples drawn from three distributions with superimposed theoretical lines
for the Generalized Logistic distribution (thin line) and Pearson Type III distribution (thick line)
from examples 10–4 and 10–6

10–7
lmrdia <- lmrdia() # function takes no arguments
#pdf("lmr4.pdf")
plotlmrdia(lmrdia, autolegend=TRUE, xleg=0, yleg=1)
# the plotlmrdia() function takes many arguments
#dev.off()

The lmrdia() function returns an R list containing matrices of the τ3 and τ4 values for
selected distributions. The plotlmrdia() function accepts (expects) the list returned by
lmrdia(). The plotlmrdia() function has a variety of named arguments to configure
the diagram. Example 10–7 show the autogeneration of a distribution legend with the
origin of the legend at {τ3, τ4} = {0, 1}.

The distributions depicted in figure 10.5 plot as either points or lines. Some large-
parameter distributions such as the Generalized Lambda (four parameter), Wakeby (five
parameter), and quantile mixtures (see Karvanen, 2009) occupy difficult to depict regions
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of the diagram. The region of {τ kap3 , τ
kap
4 } for the Kappa distribution was shown by anno-

tation of arrows and text in figure 10.1. J

−1.0 −0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

L−SKEW

L−
K

U
R

T
O

S
IS

●

●

Theoretical limits
GEV
GLO
GNO
GPA
PE3
EXP
NOR
GUM
RAY
UNI

Figure 10.5. Default L-moment ratio diagram provided by package lmomco from example 10–7

Natural phenomena often are generated from randomvariables that are strictly positive.
As a result, it is common for sample distributions to be positively skewed. A particularly
useful L-moment ratio diagram for studying such distributions is shown in figure 10.6,
which was produced by example 10–8 . The diagram encompasses generally positive, but
not strictly positive τ3, to accommodate vagaries of sampling. An L-moment ratio diagram
with the limits as shown in the figure will often provide an appropriate base figure for
many situations of distributional analysis of natural phenomena.

10–8
#pdf("lmr5.pdf")
plotlmrdia(lmrdia(), autolegend=TRUE, nopoints=TRUE,

xleg=0.1, yleg=0.41,
xlim=c(-0.1,0.5), ylim=c(-0.1,0.4))

#dev.off()

J
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Figure 10.6. More typical L-moment ratio diagram for generally positively skewed phenomena
provided by package lmomco from example 10–8

In example 10–9 , some arbitrary population L-moment values are selected (λ1 =

10000, λ2 = 7500, τ3 = 0.3, and τ4 = 0.2). A sample size of n = 30 and the number
of simulations to demonstrate nsim are set. The vec2lmom() and parkap() functions
are used to set the L-moments and compute the Kappa parameters. Two temporary vec-
tors t3 and t4 also are created. These vectors are filledwithin the for() loopwith values
of τ̂3 and τ̂4 from simulated Kappa quantiles computed by the rlmomco() function that
are then passed to the lmoms() function. After the t3 and t4 vectors are populated, each
vector is plotted on an L-moment ratio diagram in figure 10.7. The lines of code containing
the two points() functions show how the plotting operations were made for the figure.

10–9
T3 <- 0.3; T4 <- 0.2; n <- 30; nsim <- 50

lmr <- vec2lmom(c(10000,7500,T3,T4))
kap <- parkap(lmr)
t3 <- t4 <- vector(mode = "numeric")
for(i in seq(1,nsim)) {

sim.lmr <- lmoms(rlmomco(n,kap))
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t3[i] <- sim.lmr$ratios[3]
t4[i] <- sim.lmr$ratios[4]

}

#pdf("lmr6.pdf")
plotlmrdia(lmrdia(), autolegend=TRUE, nopoints=TRUE,

xleg=0.1, yleg=0.41,
xlim=c(-0.1,0.5), ylim=c(-0.1,0.4))

points(t3,t4) # small open circles
points(mean(t3),mean(t4), pch=16, cex=3) # filled circle
segments(T3,-1, T3,1)
segments(-1,T4, 1,T4)
#dev.off()
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Figure 10.7. L-moment ratio diagram shown distribution of 50 sample simulations of of L-skew
and L-kurtosis for n = 30 samples drawn from a KAP(10000, 7500, 0.3, 0.2) distribution from
example 10–9

The diagram also shows the intersection of the population {τ3, τ4} values by the hor-
izontal and vertical crossing lines, and the large filled circle is plotted at the mean()
values of the t3 and t4 vectors. The diagram shows, like the simulations that produced
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figures 10.2 and 10.3, that {τ̂3, τ̂4} from a given parent distribution will exhibit scatter on
an L-moment ratio diagram.

A potentially paradoxical situation in the case for the Kappa is that the Kappa cannot
be fit to some of the {τ̂3, τ̂4} because these pairs plot above the Generalized Logistic line.
The simulations show that the Kappa can generate data having the sample pair {τ̂3, τ̂4}
plot above the Generalized Logistic. For the example, there are nine simulations for which
this is true. The paradox is actually no different from the three-parameter distribution
simulations that were made in the context of figures 10.2 and 10.3. Those simulations also
produced τ̂4 values for a given τ̂3, which are unattainable when the distribution is fit by
the method of L-moments.

To further clarify, if one were to take the simulated sample L-moments (the sample
L-moments for an individual execution of the for() loop in example 10–9 ) and turn
around and attempt to fit the Kappa distribution, one would be unable to do so because
of inherent limitations of shape for the Kappa distribution. As mitigation for the paradox,
so-called regional L-moments or pooled L-moments of many quasi-independent data sets,
which are assumed to be generated by a common parent distribution, can be used. An
example of such practice is provided in Section 11.1 and by citation in Section 12.7.2. J

10.4 Summary

In this chapter, L-moment ratio diagrams are introduced and specifically diagrams of τ3
and τ4 are described. Such diagrams are useful for distinguishing between distributional
form because specific intra-moment—that is conceptually unique—relations exist for each
distribution. Detailed description of the general interpretation of the diagrams is provided.
The 9 examples in the chapter demonstrate how sampling variability affects graphical
interpretation and demonstrate the construction of L-moment ratio diagrams using the
lmomco package.

There are other forms of L-moment ratio diagrams in use including diagrams of τ2
versus τ3 (Vogel and others, 2008) and τ4 versus τ6 (Hosking and others, 2000; Hosking,
2007b). The former are useful for evaluation of two-parameter distributions, whereas the
latter are useful for evaluation of distribution form for generally symmetrical distributions.
Neither of these diagrams are otherwise discussed in this dissertation.
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Chapter 11

Short Studies of Statistical Regionalization

In this chapter, I present two short studies concerning original distributional analysis of

hydrologic data using L-moment statistics. This chapter is intended to provide a “look

and feel” of distributional analysis using L-moments and the lmomco package for decid-

edly non-Normal data and provide guidance into regionalization of hydrometeorolog-

ical data. This chapter is dependent on many concepts and functions described and

demonstrated in previous chapters, and general familiarity with L-moments, distribu-

tions, and L-moment ratio diagrams is assumed. Several nuances of distribution fit and

solution choice are described. This chapter could be especially useful to some less expe-

rienced readers expecting to conduct their own distributional analysis. Therefore, this

chapter in a way “blue prints” a simple form distributional analysis with L-moment

statistics using R.

11.1 Analysis of Annual Maxima for 7-Day Rainfall for North-Central
Texas Panhandle

A small region of the north-central Texas Panhandle is chosen for analysis of the mag-
nitude and frequency of 7-day annual maxima rainfall.1 For the study area of the north-
central Texas Panhandle, an estimate of the 100-year recurrence interval is sought for 7-day
annual maximum depth of rainfall. A comparison of this estimate to that from a previous
study is made. A fascinating discussion of identification of similar rainfall climates using
L-moments is available in Guttman (1993) and application in Guttman and others (1993).

1 Specifically, the largest total rainfall for 7 consecutive days per year.

314



Texas Tech University,William H. Asquith, May 2011

11.1.1 Background and Data

Asquith (1998) andAsquith andRoussel (2004) provide a comprehensive L-moment-based
analysis of regional characteristics of depth-duration frequency of rainfall in Texas. For
the analysis shown in this section, the data used are 7-day annual maxima for seven daily
rainfall stations operated by or in cooperation with the National Weather Service. Each
station has at least 10 years of record through 1994. Aswill be seen, these data are available
in the lmomco package. The text in the remainder of this background and data section is
derived from Asquith (1998).

Distributional analysis of rainfall data is important because rainfall depths for various
durations and frequencies, referred to as depth-duration frequency (DDF), have many
uses. A common use (Asquith, 1998) of DDF is for the design of structures that control
and route localized runoff, such as parking lots, storm drains, and culverts. Another use of
DDF is to drive river-flow models that incorporate rainfall characteristics. Accurate DDF
estimates are important for cost-effective structural designs at stream crossings and for
developing reliable flood-prediction models.

Accurate DDF analysis using data from any one rainfall-monitoring station is difficult
(see Wallis, 1988, p. 305) because the data for one station represent a poor spatial and
(or) temporal sampling of rainfall distributions. For example, storms occur over areas that
might or might not contain a station; and generally, comparatively short records (small
samples) are available at a single station. Additionally, the distribution of rainfall associ-
ated with any one station tends to be highly non-Normal. More accurate DDF estimates
can be developed by “pooling” or “regionalizing” data from many nearby stations (see
Stedinger and others, 1993, chap. 18, p. 33). Schaefer (1990) provided a highly influential
paper on rainfall regionalization for the Asquith (1998) study.

11.1.2 Distributional Analysis

The underlying assumption of the rainfall regionalization for the north-central Texas
Panhandle is the assumption that the L-moments of the unknown parent distribution
of annual maxima can be reliably estimated by weighted means of station-specific
L-moments from the observation network within the study area. The assumption also
implies that a single distribution is appropriate formodeling the frequency of annual max-
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ima in the study area. Hosking and Wallis (1993; 1997) describe an extensive L-moment-
based regionalization method based partly on this assumption, and other studies using
this assumption are readily found in the literature of this discipline.

The analysis begins by loading seven individual data sets that are provided in the
lmomco package. Each data set is identified in example 11–1 and represents a time series of
annual 7-day rainfall maxima. The communities are Amarillo, Canyon, Claude, Hereford,
Tulia, and Vega. The tulia6Eprecip location is about 6 miles east of Tulia. Collectively,
these communities represent an area of approximately 1,400 square miles.

11–1
data(amarilloprecip) # from lmomco package
data(canyonprecip) # .. ditto ..
data(claudeprecip) # .. ditto ..
data(herefordprecip) # .. ditto ..
data(tuliaprecip) # .. ditto ..
data(tulia6Eprecip) # .. ditto ..
data(vegaprecip) # .. ditto ..

The loading of the data in example 11–2 is followed by placing the DEPTHs into
variables with abbreviated names of the community. A sort() operation also is made
because only sorted data are needed for the analysis; no evaluation of climatic cycles or
trends is made and an assumption of stationarity is implicitly made.

11–2
AMAR <- sort(amarilloprecip$DEPTH)
CANY <- sort(canyonprecip$DEPTH)
CLAU <- sort(claudeprecip$DEPTH)
HERF <- sort(herefordprecip$DEPTH)
TULA <- sort(tuliaprecip$DEPTH)
TUL6 <- sort(tulia6Eprecip$DEPTH)
VEGA <- sort(vegaprecip$DEPTH)

The distributional analysis initiates with a graphical review using box plots of the dis-
tribution of the rainfall data for each community. The box plots are shown in figure 11.1,
which was created by example 11–3 . In the example, the lengths of the record are com-
puted and set into the w variable. These lengths are used as weights for a weighted-mean
computation in a subsequent example.
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11–3
x <- list(AMAR=AMAR, CANY=CANY, CLAU=CLAU,

HERF=HERF, TULA=TULA, TUL6=TUL6,
VEGA=VEGA) # combine all into short variable name

w <- sapply(x,length) # w will be used in a later example
print(w) # show the lengths of the individual records
AMAR CANY CLAU HERF TULA TUL6 VEGA

47 72 91 67 48 50 61
#pdf("texas_panhandle_boxplot.pdf")
boxplot(x, ylab="7-DAY ANNUAL MAX RAINFALL, IN INCHES", range=0)
#dev.off()
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Figure 11.1. Box plots of the distributions of 7-day annual maxima rainfall for seven communities
in the north-central Texas Panhandle from example 11–3

The box plots show that the typical location or central tendency of the seven distribu-
tions is about 3.75 inches. The individual interquartile range or IQRs of the seven distribu-
tions also are similar. Although exhibiting apparent differences in the distal-tail regions,
the data clearly have positive τ3. For the analysis here, it is assumed that the observed dif-
ferences in distribution geometry represent vagaries of sampling from a common parent
distribution.
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Additional variations on box plots exist to assess distributional geometry. The R pack-
ages beanplot by Kampstra (2008a) and vioplot by Adler (2005) provide functions of the
respective names that produce bean plots and violin plots. These two plot types can be
used to depict the probability density of the data in a style that is unattainable by the
conventional box plot. Kampstra (2008b) provides additional description of bean plots.
Example 11–4 demonstrates the application of these plots and the results are shown in
figure 11.2.

11–4
library("beanplot"); library("vioplot")
rng <- sapply(x, range) # x from previous example
ylim <- c(min(rng[1,]), max(rng[2,]))
#pdf("texas_panhandle_beanvio.pdf");
par(mfrow=c(2,1), mai=c(0.5,1,0.5,0.5) )
beanplot(x, ll=0.04, main="BEAN PLOT: beanplot()", log="",
ylim=ylim, ylab="7-DAY ANNUAL MAX RAINFALL,\n IN INCHES",
overallline="median")
cities <- names(x); data <- x # get names and make a copy
names(data)[1] <- "x" # modify the copy
do.call("vioplot",c(data, list(ylim=ylim, names=cities,

col="white")))
title(main="VIOLIN PLOT: vioplot()",

ylab="7-DAY ANNUAL MAX RAINFALL,\n IN INCHES")
#dev.off()

The bean plots show the density as the curved hull around the individual data points
(“beans” or “kernels”). The beanplot() function also depicts that overall median of the
seven data groups as the dotted horizontal line. The violin plots also show the density,
but truncate the density at the minimum and maximum values. Inside each violin is a
more-or-less conventional box plot. Both beanplot() and vioplot() functions each
have numerous configuration options.

Continuing with the analysis, the Weibull plotting-positions and sample L-moments of
the rainfall data are computed in example 11–5 , and set into 14 concise variable names.
The plotting positions are used in subsequent plotting operations, and the L-moments are
used to fit probability distributions using the method of L-moments.

11–5
AMAR.pp <- pp(AMAR); CANY.pp <- pp(CANY)
CLAU.pp <- pp(CLAU); HERF.pp <- pp(HERF)
TULA.pp <- pp(TULA); TUL6.pp <- pp(TUL6)
VEGA.pp <- pp(VEGA)
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Figure 11.2. Bean and violin plots of the distributions of 7-day annual maxima rainfall for seven
communities in the north-central Texas Panhandle from example 11–4

AMAR.lmr <- lmoms(AMAR); CANY.lmr <- lmoms(CANY)
CLAU.lmr <- lmoms(CLAU); HERF.lmr <- lmoms(HERF)
TULA.lmr <- lmoms(TULA); TUL6.lmr <- lmoms(TUL6)
VEGA.lmr <- lmoms(VEGA)

As part of the analysis, weighted-mean values of the sample L-moments are needed.
To simplify later code, it is useful to have the sample L-moments collected into individual
variables. This is done in example 11–6 by long-hand placement into the variable L1 for
λ̂1, and using a convenience function named afunc() for τ̂2, τ̂3, and τ̂4, in variables T2,
T3, and T4, respectively. The example shows the multiplication of 1.018λ̂1 to account for
a recording bias attributable to a 7-day interval as developed byWeiss (1964) and used by
Asquith (1998, table 1).
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11–6
"afunc" <- function(r) {

return(c(AMAR.lmr$ratios[r], CANY.lmr$ratios[r],
CLAU.lmr$ratios[r], HERF.lmr$ratios[r],
TULA.lmr$ratios[r], TUL6.lmr$ratios[r],
VEGA.lmr$ratios[r]))

}
L1 <- c(AMAR.lmr$lambdas[1], CANY.lmr$lambdas[1],

CLAU.lmr$lambdas[1], HERF.lmr$lambdas[1],
TULA.lmr$lambdas[1], TUL6.lmr$lambdas[1],
VEGA.lmr$lambdas[1])*1.018; # bias correction factor

Weiss (1964)

T2 <- afunc(2); T3 <- afunc(3); T4 <- afunc(4)

Regional values for the sample L-moments (“regional L-moments”) are computed in
example 11–7 using the weighted.mean() function using the weights in w from exam-
ple 11–3 . The example continueswith the selection of theKappadistribution formodeling.
The Kappa distribution often is a highly suitable distribution to model hydrometeoro-
logical data sets provided that τ̂4 values are less than those of the Generalized Logistic
distribution (see Chapter 10).

11–7
reg.L1 <- weighted.mean(L1, w); reg.T2 <- weighted.mean(T2, w)
reg.T3 <- weighted.mean(T3, w); reg.T4 <- weighted.mean(T4, w)
reg.lmr <- vec2lmom(c(reg.L1, reg.L1*reg.T2, reg.T3, reg.T4))
reg.kap <- parkap(reg.lmr) # parameters of the Kappa distribution

str(reg.lmr) # output the regional L-moments
List of 9
$ L1 : num 3.83
$ L2 : num 0.85
$ TAU3: num 0.186
$ TAU4: num 0.188
$ TAU5: NULL
$ LCV : num 0.222
$ L3 : num 0.158
$ L4 : num 0.16
$ L5 : NULL

print(reg.kap) # output the regional Kappa distribution
$type
[1] "kap"
$para

xi alpha kappa h
3.4142310 0.9135191 -0.1389698 -0.5673624
$source
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[1] "parkap"
$ifail
[1] 0
$ifailtext
[1] "Successful parameter estimation."

Example 11–7 shows that the Kappa is successfully fit to the regional L-moments and
forms a regional Kappa distribution, and the fitted distribution is

P7-day(F ) = 3.414 +
0.9135

−0.1390

[
1−

(
1− F−0.5674

−0.5674

)]
(11.1)

where P7-day is the 7-day annual maximum rainfall in inches for F (nonexceedance proba-
bility).

The L-moment ratio diagram is created in example 11–8 and shown in figure 11.3. The
diagram shows that the regional value (filled circle) for τ4 (and generally the τ̂4 for each
community) is larger than that for all the three-parameter distributions with the exception
of the Generalized Logistic. In fact, the regional value for τ4 is almost as large as that for
the Generalized Logistic; in this circumstance the Kappa distribution can just barely be
fit.

11–8
#pdf("texas_panhandle_lmrdia.pdf")
lmrdia <- lmrdia()
plotlmrdia(lmrdia,autolegend=TRUE, nopoints=TRUE,

nolimits=TRUE, xlim=c(0,0.3), ylim=c(-0.1,0.4),
xleg=0.05, yleg=0.3)

points(T3,T4)
points(reg.T3,reg.T4, pch=16, cex=2)
#dev.off()

The distributional analysis is effectively completed in example 11–9 . In the example,
the quantiles of the Kappa distribution for the selected F values are computed. These
are shown in figure 11.4 connected as a curved line, which is superimposed on the indi-
vidual data points of the empirical distribution for each of the seven communities. The
figure shows the similarity of the seven empirical distributions. Because the communities
are close to each other, are at similar elevations, and thus have similar climate, there is
anticipation that a more accurate estimate in the far right tail of the unknown parent dis-
tribution is acquired by pooling (averaging together) the L-moments together (Hosking
and Wallis, 1993, 1997).
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Figure 11.3. L-moment ratio diagram showing τ̂3 and τ̂4 of 7-day annual maximum rainfall for
seven communities in Texas Panhandle (open circles) and weighted mean value (filled circle)
from example 11–8

11–9
F <- seq(0.001,0.999, by=0.001)
#pdf("texas_panhandle.pdf", version="1.4")
plot(F,quakap(F,reg.kap), type="n",

xlim=c(0,1), ylim=c(0,12),
xlab="NONEXCEEDANCE PROBABILITY",
ylab="7-DAY RAINFALL DEPTH, IN INCHES")

points(AMAR.pp, AMAR, pch=16, col=rgb(0, 0, 0, 0.15))
points(CANY.pp, CANY, pch=16, col=rgb(0, 0, 0, 0.20))
points(CLAU.pp, CLAU, pch=16, col=rgb(0, 0, 0, 0.25))
points(HERF.pp, HERF, pch=16, col=rgb(0, 0, 0, 0.35))
points(TULA.pp, TULA, pch=16, col=rgb(0, 0, 0, 0.40))
points(TUL6.pp, TUL6, pch=16, col=rgb(0, 0, 0, 0.45))
points(VEGA.pp, VEGA, pch=16, col=rgb(0, 0, 0, 0.50))
T.YEAR <- 100
PT <- quakap(T2prob(T.YEAR),reg.kap)
lines(c(T2prob(T.YEAR), T2prob(T.YEAR)), c(0,20), lty=2)
lines(c(0,1),c(PT,PT), lty=2)
lines(F,quakap(F,reg.kap), lwd=3)
#dev.off()
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Figure 11.4. Empirical distribution of 7-day annual maxima rainfall for seven communities in the
Texas Panhandle—Dashed lines show intersection of 100-year event from regional Kappa distri-
bution (thick line) from example 11–9.

The purpose of the distributional analysis here is to estimate the 100-year, 7-day annual
maximum rainfall depth. In the example, theT2prob() function is used to compute theF
of the 100-year event (F = 0.99). The dashed lines in figure 11.4 indicate the solution. The
analysis is completed by outputting the 100-year event in variable PT in example 11–10 .
The output shows that the estimated 100-year, 7-day rainfall depth is about 9.29 inches.

11–10
print(PT)
[1] 9.293368

Asquith and Roussel (2004, p. 82) report that the 100-year, 7-day annual maximum rain-
fall for the approximate geographic center of the seven communities is about 9.3 inches.
Their analysis was based on regionalized parameters of a Generalized Extreme Value
distribution fit by the method of L-moments to each station (the 7 here and another 858

across Texas) by Asquith (1998).The two rainfall depths of 9.29 and 9.3 inches compare
favorably. The computational reliability of some of the lmomco algorithms (circa 2008) com-
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pared to algorithms implemented by the author in the period 1996–98 using the FORTRAN

algorithms of Hosking (1996b) is demonstrated. J

11.2 Peak-Streamflow Distributions for Selected River Basins in the
United States

In Section 11.1, a style of distributional analysis is conducted in which the sample
L-moments of rainfall data collected from different localities having similar climate are
pooled together. Such a practice is done with the intent of making more secure inferences
of distributional form and extreme-tail quantile estimation.

In this section, however, distributional analysis is conducted using L-moments to doc-
ument distributional differences of the annual peak streamflow for five climatically and
physiographically different rivers of the United States that have similar drainage areas.
Repeating the descriptions on page 56, annual peak streamflows are the largest instan-
taneous volumetric rate of flow in a stream for a given year, and such data provide the
backbone for statistical analyses that govern the management of flood plains and con-
tribute to the design of water-related infrastructure such as bridges.

11.2.1 Background and Data

The five rivers along with corresponding U.S. Geological Survey streamflow-gaging sta-
tion number and drainage area are listed in table 11.1. These five rivers were selected
because they are similarly sized and represent fundamentally different hydrologic pro-
cesses because the climate and physiographic settings of the five unique river basins are
very diverse.

11.2.2 Distributional Analysis

The analysis of the annual peak streamflow data is initiated by loading in five individual
data sets that are provided within the lmomco package. Each data set is seen in exam-
ple 11–11 , and each data set represents a time series of annual peak streamflow for the
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Table 11.1. Summary of selected U.S. Geological Survey streamflow-gaging stations for distribu-
tional analysis using L-moments
Station number Station name Drainage area

(square miles)
01515000 Susquehanna River near Waverly, New York 4,773

02366500 Choctawhatchee River near Bruce, Florida 4,384

08151500 Llano River at Llano, Texas 4,203

09442000 Gila River near Clifton, Arizona 4,010

14321000 Umpqua River near Elkton, Oregon 3,683

respective streamflow-gaging stations. The example also shows that the Streamflow
data are placed into five concise variable names.

11–11
data(USGSsta01515000peaks) # load data from lmomco package
data(USGSsta02366500peaks) # .. ditto ..
data(USGSsta08151500peaks) # .. ditto ..
data(USGSsta09442000peaks) # .. ditto ..
data(USGSsta14321000peaks) # .. ditto ..

susque.Q <- USGSsta01515000peaks$Streamflow # concise names
chocta.Q <- USGSsta02366500peaks$Streamflow # .. ditto ..
llano.Q <- USGSsta08151500peaks$Streamflow # .. ditto ..
gila.Q <- USGSsta09442000peaks$Streamflow # .. ditto ..
umpqua.Q <- USGSsta14321000peaks$Streamflow # .. ditto ..

As in Section 11.1.2, the distributional analysis begins with a graphical review using
box plots of the distribution of the data for each community. The box plots are shown in
figure 11.5, which was created by example 11–12 .

11–12
#pdf("usrivers_boxplot.pdf")
allQ <- list(Susque=susque.Q, Chocta=chocta.Q,

Llano=llano.Q, Gila=gila.Q, Umpqua=umpqua.Q)
boxplot(allQ, ylab="PEAK STREAMFLOW, IN CFS", range=0)
#dev.off()

The Weibull plotting positions and sample L-moments of the streamflow data are com-
puted in example 11–13 and set into 10 concise variable names. The plotting positions
are used in subsequent plotting operations, and the L-moments are used to fit probability
distributions using the method of L-moments.
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Figure 11.5. Box plots of empirical distribution of annual peak streamflow for five selected river
basins in the United States from example 11–12

11–13
susque.pp <- pp(susque.Q); chocta.pp <- pp(chocta.Q)
llano.pp <- pp(llano.Q); gila.pp <- pp(gila.Q)
umpqua.pp <- pp(umpqua.Q)

susque.lmr <- lmoms(susque.Q); chocta.lmr <- lmoms(chocta.Q)
llano.lmr <- lmoms(llano.Q); gila.lmr <- lmoms(gila.Q)
umpqua.lmr <- lmoms(umpqua.Q)

Following the custom of the author’s preference for initial forays into distributional
analysis of hydrologic data, a Kappa distribution is fit to the L-moments in example 11–14 .
Inspection of the Kappa parameters using the print() or str() functions (results not
shown) in the five variables shows that the distribution cannot be fit to theChoctawhatchee
River data because the data are too L-kurtotic. So for site-to-site comparison of a common
fitted distribution, the Kappa is not optimal in this circumstance.

11–14
susque.kap <- parkap(susque.lmr)
chocta.kap <- parkap(chocta.lmr); llano.kap <- parkap(llano.lmr)
gila.kap <- parkap(gila.lmr); umpqua.kap <- parkap(umpqua.lmr)
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An L-moment ratio diagram with the sample L-moments of the five rivers is created
and plotted in example 11–15 and shown in figure 11.6. The open-circle symbol for each
river is scaled somewhat according to the magnitude of τ5, and the first letter of each river
name is superimposed on the open circles.

11–15
Stau <- c(susque.lmr$ratios[3], susque.lmr$ratios[4])
Ctau <- c(chocta.lmr$ratios[3], chocta.lmr$ratios[4])
Ltau <- c( llano.lmr$ratios[3], llano.lmr$ratios[4])
Gtau <- c( gila.lmr$ratios[3], gila.lmr$ratios[4])
Utau <- c(umpqua.lmr$ratios[3], umpqua.lmr$ratios[4])

#pdf("usrivers_lmrdia.pdf", version="1.4")
lmrdiastuff <- lmrdia()
plotlmrdia(lmrdiastuff, autolegend=TRUE, xleg=0, yleg=0.6,

xlim=c(-0.2,0.6), ylim=c(-0.2,0.6))

# plot first letter of the river over the circle
points(Stau[1], Stau[2], cex=1.5, pch="S")
points(Ctau[1], Ctau[2], cex=1.5, pch="C")
points(Ltau[1], Ltau[2], cex=1.5, pch="L")
points(Gtau[1], Gtau[2], cex=1.5, pch="G")
points(Utau[1], Utau[2], cex=1.5, pch="U")

mycol <- rgb(0, 0, 0, 0.75)
# plot circle with diameter scaled somewhat with Tau5
points(Stau[1], Stau[2], cex=1+2*susque.lmr$ratios[5], col=mycol)
points(Ctau[1], Ctau[2], cex=1+2*chocta.lmr$ratios[5], col=mycol)
points(Ltau[1], Ltau[2], cex=1+2* llano.lmr$ratios[5], col=mycol)
points(Gtau[1], Gtau[2], cex=1+2* gila.lmr$ratios[5], col=mycol)
points(Utau[1], Utau[2], cex=1+2*umpqua.lmr$ratios[5], col=mycol)

legend(0.2,0.6,
c("S Susquehanna River, New York",

"C Choctawhatchee River, Florida",
"L Llano River, Texas",
"G Gila River, Arizona",
"U Umpqua River, Oregon"), box.lty=0, bty="n")

#dev.off()

It is obvious that the Choctawhatchee River plots in figure 11.6 above the trajectory of
the Generalized Logistic distribution on the diagram, and hence, as already mentioned, a
Kappa distribution cannot be fit to the sample L-moments of the Choctawhatchee River
data. The analyst could choose to fall back to the Generalized Logistic distribution at the
expense of the distribution not being L-kurtotic enough, but other distributions such as
the Wakeby or Generalized Lambda could also be consulted.
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Figure 11.6. L-moment ratio diagram showing τ̂3 and τ̂4 of annual peak streamflow data for five
selected river basins in the United States from example 11–15. The size of the open circles is
scaled somewhat in proportion with τ̂5.

In example 11–16 , the Wakeby distribution is fit. Inspection of the Wakeby parameters
in the five variables shows that the distribution could be fit. The Susquehanna and Gila
Rivers require that ξ = 0 in order for the Wakeby to be fit but the remaining three do not.

11–16
susque.wak <- parwak(susque.lmr)
chocta.wak <- parwak(chocta.lmr)
llano.wak <- parwak(llano.lmr)
gila.wak <- parwak(gila.lmr)
umpqua.wak <- parwak(umpqua.lmr)

Before continuing with rather complex examples, a few useful variables are set in exam-
ple 11–17 , which are related to F values (F and qF) for pending horizontal axis and ver-
tical axis limits (mymin and mymax). The qnorm() function is used to transform F into
standard normal deviates.

11–17
F <- nonexceeds()
qF <- qnorm(F)
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mymin <- 0
mymax <- 300000

Plots of the QDF of the fitted Wakeby distribution are laid out and created in exam-
ple 11–18 . The five plots are shown in figure 11.7. The QDFs are superimposed on the
actual data values.

11–18
#pdf("usrivers_qdf.pdf")
layout(matrix(1:6, ncol=2))
qpp <- qnorm(susque.pp); Q <- sort(susque.Q)
plot(qpp,Q, ylim=c(mymin,mymax), xlim=c(-2,3),

xlab="STANDARD NORMAL DEVIATE",
ylab="STREAMFLOW, IN CFS")

lines(qF,par2qua(F,susque.wak), col=2)
mtext("Susquehanna River, New York")
lines(c(qnorm(0.99),qnorm(0.99)), c(1,1000000), lty=2)

qpp <- qnorm(chocta.pp); Q <- sort(chocta.Q)
plot(qpp,Q, ylim=c(mymin,mymax), xlim=c(-2,3),

xlab="STANDARD NORMAL DEVIATE",
ylab="STREAMFLOW, IN CFS")

lines(qF,par2qua(F,chocta.wak),col=2)
mtext("Choctawhatchee River, Florida")
lines(c(qnorm(0.99),qnorm(0.99)), c(1,1000000), lty=2)

qpp <- qnorm(llano.pp); Q <- sort(llano.Q)
plot(qpp,Q, ylim=c(mymin,mymax), xlim=c(-2,3),

xlab="STANDARD NORMAL DEVIATE",
ylab="STREAMFLOW, IN CFS")

lines(qF,par2qua(F,llano.wak), col=2)
mtext("Llano River, Texas")
lines(c(qnorm(0.99),qnorm(0.99)), c(1,1000000), lty=2)

qpp <- qnorm(gila.pp); Q <- sort(gila.Q)
plot(qpp,Q, ylim=c(mymin,mymax), xlim=c(-2,3),

xlab="STANDARD NORMAL DEVIATE",
ylab="STREAMFLOW, IN CFS")

lines(qF,par2qua(F,gila.wak), col=2)
mtext("Gila River, Arizona")
lines(c(qnorm(0.99),qnorm(0.99)), c(1,1000000), lty=2)

qpp <- qnorm(umpqua.pp); Q <- sort(umpqua.Q)
plot(qpp,Q, ylim=c(mymin,mymax), xlim=c(-2,3),

xlab="STANDARD NORMAL DEVIATE",
ylab="STREAMFLOW, IN CFS")

lines(qF,par2qua(F,umpqua.wak), col=2)
mtext("Umpqua River, Oregon")
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lines(c(qnorm(0.99),qnorm(0.99)), c(1,1000000), lty=2)
#dev.off()
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Figure 11.7. Plots of QDF of fitted Wakeby distribution of annual peak streamflow and empirical
distribution for five selected river basins in the United States from example 11–18

Next, plots of the PDF of the data are created using the function check.pdf() in exam-
ple 11–19 and the results are shown in figure 11.8. The PDFs each have their own unique
geometry (shape); however, as also seen in figure 11.5, the fitted Wakeby distributions
are clearly right-tail heavy (positive skewness). The fit for the Umpqua River shows the
beginnings of asymmetric behavior towards −∞ in figure 11.7 and more clearly in fig-
ure 11.8. Truncation of this fit to a zero lower bound could be made following the material
in Section 12.6 but is not made here.
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11–19
#pdf("usrivers_pdf.pdf")
layout(matrix(1:6, ncol=2))

check.pdf(pdfwak,susque.wak, plot=TRUE)
mtext("Susquehanna River, New York")

check.pdf(pdfwak,chocta.wak, plot=TRUE)
mtext("Choctawhatchee River, Florida")

check.pdf(pdfwak,llano.wak, plot=TRUE)
mtext("Llano River, Texas")

check.pdf(pdfwak,gila.wak, plot=TRUE)
mtext("Gila River, Arizona")

check.pdf(pdfwak,umpqua.wak, plot=TRUE)
mtext("Umpqua River, Oregon")
#dev.off()

J

Interest in the distribution of annual peak streamflow is primarily in the right tail
because the design of that water-related (drainage) infrastructure is dependent on high-
magnitude events. Focused attention, therefore, is made on the fit in the right tail. Inspec-
tion of figure 11.7 suggests that the Wakeby distribution can mimic the empirical distribu-
tion of the data. However, there are concerns about underestimation of peak-streamflow
magnitude for large standard normal deviates for the Choctawhatchee and Llano Rivers
because the fitted distribution plots to the right of the two (Chocatawhatchee) and three
(Llano) largest values. The lack of apparent tail fit for the Choctawhatchee is especially
troublesome and more investigation is warranted.

The Chocatawhatchee River distribution is further considered using the Generalized
Lambda distribution (see Section 9.2.2) in example 11–20 . In the example, the parameter
solution, which has an acceptable least-square error (ε, see eq. (11.3)) for τ3 and τ4 and∆τ5
(see eq. (11.2)), is returned from 14 optimization attempts by the pargld() function. Each
attempt is started differing combinations of Generalized Lambda parameter space (see
Karian and Dudewicz, 2000). The values for chocta.gld1 are shown by the print()
function. The output also shows the contents of chocta.gld4$rest, which shows other
solutions. These are collectively treated in a later example.
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Figure 11.8. Plots of PDF of fitted Wakeby distribution of annual peak streamflow for five selected
river basins in the United States from example 11–19

11–20
chocta.gld4 <- pargld(chocta.lmr, eps=1e-2)
# print(chocta.gld4) # edited for brevity
$type
[1] "gld"
$para

xi alpha kappa h
1.666864e+05 1.505572e+05 3.356197e+01 1.462652e-01
$delTau5
[1] -0.002264453
$error
[1] 0.004366765
$source
[1] "pargld"
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$rest
xi alpha kappa h delTau5 error

1 26140 -22019 -0.144155 -0.439496 -0.01103901 4.872965e-09
2 26131 -22049 -0.143872 -0.439247 -0.01109174 5.873891e-09
3 -87708 -101009 5.848814 -0.289431 0.09507022 3.123230e-10
4 -87713 -101014 5.848653 -0.289428 0.09507910 6.235505e-10
5 26841 120943 7.315955 70.672263 -0.24461201 2.798407e-06
6 26855 120648 7.298149 70.072798 -0.24552523 3.524567e-09

The values under the delTau5 and error headings represent the following quantities

(i)∆τ5 = (i)τ
gld
5 − τ̂5 (11.2)

(i)ε = ((i)τ
gld
3 − τ̂3)2 + ((i)τ

gld
4 − τ̂4)2 (11.3)

where (i) is the ith attempt, τ gldr represent the rth L-moment of the fitted Generalized
Lambda and τr represent sample values. The ∆τ5 represents the difference between τ5
of the fitted distribution and that of the data. This difference is not explicitly minimized
by the algorithm in the pargld() function, but this difference can be used to judge the
merit of a given solution for the Generalized Lambda. On the other hand, the ε values do
represent minimizations performed by the optim() function that is repetitively called
by the pargld() function.

Example 11–20 shows that four different “solutions” exist that could be acceptable.
A solution is represented by attempts (1 and 14). In example 11–21 , the three additional
Generalized Lambda solutions are set into descriptive variable names.

11–21
chocta.gld1 <-
vec2par(c(26140, -22019, -0.144155, -0.439496),

type="gld")

chocta.gld2 <-
vec2par(c(-87708, -101009, 5.848814, -0.289431),

type="gld")

chocta.gld3 <-
vec2par(c(26841, 120943, 7.315955, 70.672263),

type="gld")

To clarify, the contents of variables chocta.gld1, chocta.gld2, chocta.gld3,
and chocta.gld4, these Generalized Lambda solutions and their diagnostic errors are
shown in the following equation ensemble

333



Texas Tech University,William H. Asquith, May 2011

GLD1(F ) = 26140− 22019[F−0.144155 − (1− F )−0.439496] (11.4)

∆τ5 ≈ −0.011, ε < 10−8

GLD2(F ) = −87708− 101009[F 5.848814 − (1− F )−0.289431] (11.5)

∆τ5 ≈ 0.095, ε < 10−9

GLD3(F ) = 26841 + 120943[F 7.315955 − (1− F )70.672263] (11.6)

∆τ5 ≈ −0.245, ε < 10−5

GLD4(F ) = 166686 + 150557[F 33.56197 − (1− F )0.146265] (11.7)

∆τ5 ≈ −0.002, ε < 10−2

where the nomenclature GLD1(F ) is equivalent to chocta.gld1 and extends to the
other three solutions.

Which of the solutions is most preferable? The choice of solution is a problem shows
that amajor feature and yetmisfeature of theGeneralized Lambda. TheGLD2(F ) solution
is optimal as measured by the ε (the smallest of the 14 attempts), but the ∆τ5 is not as
small as two of the other solutions. The GLD3(F ) solution also has a small ε, but the∆τ5
is extremely large—one would expect this solution to appear quite different from the data.
It appears on further consideration that the GLD1(F ) and GLD4(F ) solutions might be
preferable. Readers are asked to recall that GLD4(F ) was returned by the pargld()
function.

In example 11–22 , empirical distribution along with the four Generalized Lambda
solutions and the Wakeby distribution are plotted and are shown in figure 11.9.

11–22
#pdf("usrivers_gld.pdf")
xs <- qnorm(chocta.pp)

layout(1) # Previous layouts are matrices, so this might be
# needed to reset things following earlier examples

plot(qnorm(chocta.pp), log10(sort(chocta.Q)),
xlab="STANDARD NORMAL DEVIATE",
ylab="LOG10(STREAMFLOW, IN CFS)")

lines(xs, log10(par2qua(chocta.pp,chocta.wak)), lwd=0.7, lty=2)
lines(xs, log10(par2qua(chocta.pp,chocta.gld1)), lwd=1, lty=1)
lines(xs, log10(par2qua(chocta.pp,chocta.gld2)), lwd=2, lty=3)
lines(xs, log10(par2qua(chocta.pp,chocta.gld3)), lwd=3, lty=4)
lines(xs, log10(par2qua(chocta.pp,chocta.gld4)), lwd=3, lty=1)
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legend(-2,5, lty=c(2,1,3,4,1), lwd=c(0.7,1,2,3,3),
c("Wakeby", "GLD: chocta.gld1", "GLD: chocta.gld2",

"GLD: chocta.gld3", "GLD: chocta.gld4"))
#dev.off()
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Figure 11.9. Empirical distribution of annual peak streamflow data for U.S. Geological Survey
streamflow-gagin station 02366500 Choctawhatchee River near Bruce, Florida and Wakeby and
four Generalized Lambda distributions fit by method of L-moments from example 11–22

Inspection of the figure suggests that the solution chocta.gld3 clearly has a poor fit,
which is consistent with the large∆τ5 ≈ 0. − 0.245. Also solution chocta.gld2 has a
questionable fit; although the τ3 and τ4 match that of the data, the ∆τ5 ≈ 0.095 is not
“small” compared to chocta.gld1 and chocta.gld4.

The two solutions, chocta.gld1 and chocta.gld4, both have potentially acceptable
fits depending on how the analyst interprets the diagnostics. If the analyst is interested in
distributional analysis for the right tail of the distribution as in the case of assessment of
flood risk to drainage infrastructure (say a bridge), then the fit of chocta.gld4might be
preferable. However, this solution diverges from the data in the left tail. If the objective of
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distributional analysis is to generally mimic the full spectrum of the flood potential, then
solution chocta.gld1might be preferable.

In conclusion, the choice between different distributions or multiple solutions for a
distribution is not a trivial one and serious reflection on the topic is needed in many real-
world circumstances. Ambiguity never-the-less often remains or is intrinsically expected
in distributional analysis of hydrometeorological data or other non-Normal data with
small sample sizes. Whereas goodness-of-fit tests, which are outside the scope here, or
L-moment ratio diagrams provide guidance, it can be difficult to separate the purity of
statistical computations from the context to model building process of the distributional
analysis for a given problem. J

11.3 Summary

In this chapter, 22 examples for two short studies of distributional characteristics involving
annual maximum rainfall, and annual peak streamflow data are presented. In the former
study, the rainfall data from the observation network are assumed to be drawn from a
common parent distribution and the sample L-moments could be pooled together by
weighted-mean values to estimate a regional Kappa distribution. This distribution is used
to estimate a 100-year rainfall event that is similar to one derived from a previous study.
In the later study, the streamflow data from the observation network represent distinct
distributions that reflect the unique climatic and physiographic characteristics of five
widely dispersed river basins. The Wakeby distribution is used, but concerns over fit for
one river basin in particular led to a detailed presentation of the use of the Generalized
Lambda distribution.
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Chapter 12

Advanced Topics

In this chapter, I present many generally distinct topics on advanced topics of distribu-

tional analysis using L-moments and probability-weighted moments. Inclusion of this

material in earlier chapters would, in my opinion, unnecessarily detract from the central

theme up until this point in the narrative. Familiarity L-moments and ancillary statis-

tics and their support in the lmomco package is now assumed. Primary contributions

of this chapter are detailed treatment of both left- and right-tail censoring, conditional

probability adjustment, and multivariate L-moments. Secondary contributions are an

exploration of quantile uncertainty by simulation and “journal article” like comparison

of productmoments andL-moments,which are each applied real- and logarithmic space,

for the Pearson Type III distribution. This chapter demonstrates a significant expansion

of capabilities for distributional analysis with L-moment statistics using R.

12.1 Introduction

Several generally more advanced L-moment-related topics are discussed in this chapter.
These topics do not pigeon-hole well into other portions of this dissertation, but these top-
ics never-the-less contribute to distributional analysis with L-moment statistics. The use
of L-moments and probability-weighted moments for right-tail censoring is described
in Section 12.2. Following in parallel, the use of L-moments and probability-weighted
moments for left-tail censoring is described in Section 12.3. The censoring discussion
subsequently expands in Sections 12.4 and 12.5 to include censoring by indicator variable
and detailed discussion of a method known as flipping to support left-tail censoring
from right-tail censoring operators.
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Following the censoring material, conditional probability adjustment for zero val-
ues is shown through blipped-distribution modeling, which is followed by an explo-
ration of quantile uncertainty in the context of sampling error and model-selection
error (error attributable to distribution selection). An extensive comparison between
product moments and L-moments for the Pearson Type III distribution follows. Finally,
L-comoments, which are multivariate extensions of L-moments, are described in the last
section of this chapter and thus appropriately conclude this dissertation.

12.2 L-moments from Probability-Weighted Moments for Right-Tail
Censored Distributions

Limited discussion of distributional analysis with L-moments for censored distributions
is provided in this and the next three sections. More thorough treatment of L-moments
for both (or either) right-tail and left-tail censoring is found inWang (1990a; 1990b; 1996a),
Hosking (1995), Kroll and Stedinger (1996), Zafirakou-Koulouris and others (1998), and
Wang and others (2010). The probability-weighted moments under conditions of censor-
ing are commonly referred to as partial probability-weightedmoments by those authors.
Finally, the L-moment ratio diagrams for censored distributions and samples are described
in Hosking (1995) and Zafirakou-Koulouris and others (1998) but are not considered in
this dissertation. The author recognizes the substantial nuances associated with analysis
of censored data and accordingly recommends the book by Helsel (2005) and the ancillary
R package NADA by Lee (2009).

This section concerns right-tail censoring that is restricted to circumstances involving a
constant censoring threshold T . The thresholdmight be known or unknown, but invariate
during the course of the sampling of the random variable. A different style of right-tail
censoring is discussed in Section 12.4. Much of the material in this section is drawn from
Hosking (1995).

A common data type in studies of lifetimes, survival, and reliability are right-tail cen-
sored. Specifically, the sample of size n is not fully measured on the high-magnitude
portion of the distribution. Two types of right-tail censoring (and left-tail censoring by
analogy) are recognized. For right-tail type I censoring, a right-tail censoring threshold
T is known andm values are less than this value and n −m values are greater than or
equal to T . For right-tail type II censoring, only them smallest values are observed and
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the n−m values are censored above the thresholdXm:n, which is the largest noncensored
order statistic.

The right-tail censoring fraction (ζ) is a convenient parameter to accommodate data
censoring in probability-weighted moment computations. The censoring fraction satisfies
the relation ζ = F (T ) for the CDF of random variable X with a QDF of x(F ). Differ-
ences between type I and type II censoring exist by definition and in sampling properties.
These differences become less important as sample size becomes large. Values for ζ can
be estimated by ζ = m/n; this is not necessarily an optimal choice, but for convenience,
it is all that is considered by Hosking (1995) as well as in this dissertation and the lmomco
package.

Zafirakou-Koulouris and others (1998, p. 1246) provide additional discussion of type I
and type II censoring: “Since the censoring threshold T is fixed in type I censoring,m is
a random variable with a binomial distribution. Otherwise, type II censoring results, and
T becomes the random variable, withm fixed.”

12.2.1 Theoretical Probability-Weighted Moments for Right-Tail Censored
Distributions

The theoretical probability-weightedmoments of a right-tail censored distribution having
aQDF of x(F ) are defined as two types (Hosking, 1995). The theoretical “A”- and “B”-type
probability-weighted moments for a right-tail censored random variableX1:n < X2:n <

· · · < Xm:n < T = Xm+1:n = Xm+2:n = · · · = Xn:n, where the censoring threshold
remains denoted as T , are now defined.

The definition requires a conceptualization of two sample types. Consider first the
uncensored values of random sample of sizem has a QDF expressed as

yA(F ) = x(ζF ) (12.1)

Whereas second, the complete random sample of size n has a QDF expressed as

yB(F ) =

x(F ) for 0 < F < ζ

x(ζ) = T for ζ ≤ F < 1
(12.2)
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Using the two definitions for QDF, Hosking (1995) shows that the probability-weighted
moments for moment order r for r ≥ 0, for the respective QDF are

βAr =

∫ 1

0

F r yA(F ) dF

=
1

ζr+1

∫ ζ

0

F r x(F ) dF

=
1

[F (T )]r+1

∫ T

−∞
[F (x)]r x dF (x) (12.3)

for the “A”-type probability-weighted moments and

βBr =

∫ 1

0

F r yB(F ) dF

= x(ζ)
1− ζr+1

r + 1
+

∫ ζ

0

F r x(F ) dF

= T
1− ζr+1

r + 1
+

∫ ζ

0

F r x(F ) dF

= T
1− [F (T )]r+1

r + 1
+

∫ T

−∞
[F (x)]r x dF (x) (12.4)

for the “B”-type probability-weighted moments. Finally, the relation between A- and B-
type probability-weighted moments is

βBr−1 =
1

r
[r ζr βAr−1 + (1− ζr)T ] (12.5)

where x(ζ) is the value of the QDF at nonexceedance probability F = ζ . In other words, ζ
is the right-tail censoring fraction or the probability Pr[] that x is less than the quantile at
ζ nonexceedance probability: (Pr[x < X(ζ)]). The choice of A- and B-type in derivations
of probability-weighted moments or L-moments for censored distributions can be made
by mathematical convenience according discussion by Hosking (1995).
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12.2.2 Sample Probability-Weighted Moments for Right-Tail Censored Data

The sample A- and B-type probability-weighted moments (Hosking, 1995) are computed
for a right-tail censored sample x1:n < x2:n < · · · < xm:n < T = xm+1:n = xm+2:n =

· · · = xn:n, where the censoring threshold is denoted as T . The data possessm values that
are observed (noncensored,< T ) out of a total of n samples. The ratio ofm to n is defined
as ζ = m/n, which plays an important role in parameter estimation. The ζ is interpreted
as the probability that x is less than the QDF at F = ζ : Pr[x < x(ζ)]. The sample A-type
probability-weighted moments are defined by

β̂Ar =
1

m

(
m− 1

r

)−1 m∑
j=1

(
j − 1

r

)
xj:n (12.6)

which, to reiterate the definition, are the already familiar probability-weighted moments
of the uncensored sample of Chapter 5 form observed values.

The sample B-type probability-weighted moments conversely are computed from the
“complete” sample, in which the n−m censored values are replaced by the T right-tail
censoring threshold. The B-type probability-weighted moments are defined by

β̂Br =
1

n

(
n− 1

r

)−1[ m∑
j=1

(
j − 1

r

)
xj:n +

n∑
j=m+1

(
j − 1

r

)
T

]
(12.7)

When there are more than a few censored values, the β̂Ar and β̂Br are readily estimated
by computing the βAr and using the expression

β̂Br = ZβAr +
1− Z
r + 1

T (12.8)

where
Z =

m

n

(
m− 1

r

)
/

(
n− 1

r

)
(12.9)

to make the conversion, as it were, to the β̂Br .

The A- and B-type probability-weighted moments are easily converted to A- and
B-type L-moments by the usual linear methods (see eq. (6.32)), such as supported by
the pwm2lmom() function.
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Using R Using R

As identified byHosking (1995), Hamada (1995, table 9.3) provides a table of lifetime-to-
breakagemeasured in cycles for drill bits used for producing small holes in printed circuit
boards. The data are originally credited to an F. Montmarquet. The data were collected
under various control and noise factors to perform reliability assessment to maximize
bit reliability with minimization of hole diameter. Smaller holes permit higher density of
placed circuitry, and thus small holes are economically attractive.

The lifetime-to-breakage testingwas completed at 3,000 cycles—the right-tail censoring
threshold or T = 3,000. For purposes of demonstration of right-tail censoring using A-
and B-type probability-weighted moments, these data have been merged into a single
sample in data DrillbitLifetime of the lmomco package.

Beginning in example 12–1 , the drill-bit lifetime data are set into X and the Weibull
plotting positions computed by the pp() function. The right-tail censored probability-
weighted moments are computed for the sample using the pwmRC() function. Subse-
quently, the parameters for the Generalized Pareto and Right-Censored Generalized
Pareto distributions are computed by the pargpa() (usual L-moments and probability-
weighted moments) and pargpaRC() functions, respectively.

12–1
data(DrillBitLifetime) # from lmomco package
X <- DrillBitLifetime$LIFETIME
PP <- pp(X); RCpwm <- pwmRC(X,3000)
paragpa <- pargpa(pwm2lmom(pwm(X))) # usual PWMs (no censoring)
paragpaRC <- pargpaRC(pwm2lmom(RCpwm$Bbetas), RCpwm$zeta)

The demonstration continues in example 12–2 , and the results are shown in figure 12.1.
The fits of the two Generalized Pareto distributions differ considerably. With special atten-
tion to the approximate interval F : [0.7, 0.9], it is obvious that the Right-Censored Gener-
alized Pareto provides a preferable fit over the Generalized Pareto. The Generalized Pareto
fit is swung too far to the right because this fit improperly “feels” the many values equal
to, that is censored, to the value of 3,000.

12–2
#pdf("lifetime.pdf")
plot(1-PP,qlmomco(1-PP,paragpaRC), type="l", lwd=3,

xlab="EXCEEDANCE PROBABILITY", ylim=c(0,4000),
ylab="LIFE TIME, CYCLES") # thick line

lines(1-PP,qlmomco(1-PP,paragpa)) # thin line
points(1-PP,sort(X, decreasing=TRUE))
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legend(0,4000, lwd=c(3,1), lty=c(1,1), box.lty=0, bty="n",
c("right-censored Gen. Pareto distribution",

"Gen. Pareto distribution"))
#dev.off()
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Figure 12.1. Comparison of Right-Censored Generalized Pareto distribution fit to right-tail cen-
sored probability-weighted moments (thick line) and Generalized Pareto fit to whole sample
probability-weighted moments (thin line) from example 12–2. The thick line represents the prefer-
able fit to the data.

12.3 L-moments from Probability-Weighted Moments for Left-Tail
Censored Distributions

This section concerns left-tail censoring that is restricted to circumstances involving a
constant censoring threshold T . The thresholdmight be known or unknown, but invariate
during the course of the sampling of the random variable. A different style of left-tail
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censoring is discussed in Section 12.5. Much of the material in this section is drawn from
Zafirakou-Koulouris and others (1998).

It is common in studies of hydrologic or environmental data (particularly water quality
or chemistry) to be left-tail censored. Specifically, the sample of sizen is not fullymeasured
on the low-magnitude portion of the distribution. This is known as the detection limit
problem. Two types of left-tail censoring are recognized. For left-tail type I censoring, a
left-tail censoring threshold T is known and n−m values are greater than this value and
m values are smaller than or equal to T . For left-tail type II censoring, only the n −m
largest values are observed and the m values are censored below the threshold Xm:n,
which is the smallest noncensored order statistic.

The left-tail censoring fraction (ζ) is a convenient parameter to accommodate data
censoring in probability-weighted moment computations. The censoring fraction satisfies
the relation ζ = F (T ) for the CDF of random variableX with a QDF of x(F ). Differences
between type I and type II censoring exist by definition and in sampling properties. These
differences become less important as sample size becomes large. Values for ζ can be esti-
mated by ζ = m/n; this is not necessarily an optimal choice, but for convenience, it is all
that is considered by Zafirakou-Koulouris and others (1998) as well as in this dissertation
and the lmomco package.

12.3.1 Theoretical Probability-Weighted Moments for Left-Tail Censored
Distributions

The theoretical probability-weighted moments of a left-tail censored distribution having
a QDF of x(F ) are defined as two types (Zafirakou-Koulouris and others, 1998). The
theoretical “A-prime”- and “B-prime”-type probability-weighted moments for a left-tail
censored random variable X1:n = · · · = Xm:n = T < Xm+1:n < · · · < Xn:n, where the
censoring threshold remains denoted as T , are now defined.

The definition requires a conceptualization of two sample types. Consider first the
uncensored values of random sample of size n−m has a QDF expressed as

yA
′
(F ) = x[(1− ζ)F + ζ] (12.10)

Whereas second, the complete random sample of size n has a QDF expressed as
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yB
′
(F ) =

x(ζ) = T for 0 < F ≤ ζ

x(F ) for ζ < F < 1
(12.11)

Using the two definitions for QDF, Zafirakou-Koulouris and others (1998) show that
the probability-weighted moments for moment order r for r ≥ 0, for the respective QDF
are

βA
′

r =

∫ 1

0

F ryA
′
(F ) dF

=
1

(1− ζ)r+1

∫ 1

ζ

(F − ζ)r x(F ) dF

=
1

(1− [F (T )])r+1

∫ ∞
T

[F (x)− F (T )]r x dF (x) (12.12)

for the “A-prime”-type probability-weighted moments and

βB
′

r =

∫ 1

0

F r yB
′
(F ) dF

= x(ζ)
ζr+1

r + 1
+

∫ 1

ζ

F r x(F ) dF

= T
ζr+1

r + 1
+

∫ 1

ζ

F r x(F ) dF

= T
[F (T )]r+1

r + 1
+

∫ ∞
T

[F (x)]r x dF (x) (12.13)

for the “B-prime”-type probability-weighted moments.

12.3.2 Sample Probability-Weighted Moments for Left-Tail Censored Data

The sample A’- and B’-type probability-weighted moments (Zafirakou-Koulouris and oth-
ers, 1998) are computed for a left-tail censored sample x1:n = · · · = xm:n = T < xm+1:n <

· · · < xn:n, where the censoring threshold is denoted as T . The data possess n−m values
that are observed (noncensored, > T ) out of a total of n samples. The ratio of m to n is
defined as ζ = m/n, which plays an important role in parameter estimation. The ζ is
interpreted as the probability that x is greater than the QDF at F = ζ : Pr[x > x(ζ)]. The
sample A’-type probability-weighted moments are defined by
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β̂A
′

r =
1

n−m

(
n−m− 1

r

)−1 n∑
j=m+1

(
j −m− 1

r

)
xj:n (12.14)

which, to reiterate the definition, are the already familiar probability-weighted moments
of the uncensored sample of Chapter 5 for k observed values.

The sample B’-type probability-weighted moments conversely are computed from the
“complete” sample, in which the n − m censored values are replaced by the T left-tail
censoring threshold. The B’-type probability-weighted moments are defined by

β̂B
′

r =
1

n

(
n− 1

r

)−1[ m∑
j=1

(
j − 1

r

)
T +

n∑
j=m+1

(
j − 1

r

)
xj:n

]
(12.15)

The A’- and B’-type probability-weighted moments are easily converted to A’- and
B’-type L-moments by the usual linear methods (see eq. (6.32)), such as supported by
the pwm2lmom() function.

Using R Using R

Hosking (1995, table 29.2, p. 551) provides some right-tail censored data, which has
prior use in the literature, for the lifetimes in weeks of 33 transistors.1 These data are
reproduced in example 12–3 in which the three values of 52 weeks are right-censored
and the value 51.9999 is a numerical hack so that a threshold of 52 can be used in the
function pwmRC() to compute the A- and B-type probability-weightedmoments. The data
are converted to left-tail censored by flipping and set into the LC variable (see Section 12.5
for full description of variable flipping). The example ends by reporting the right-censored
L-moments. These can be compared to back-flipped, left-censored L-moments shown in
the next example.

12–3
life.time <- c(3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11,
11, 13, 13, 13, 13, 13, 17, 19, 19, 25, 29, 33, 42, 42, 51.9999,
52, 52, 52) # last three are censored at 52
# 51.9999 was really 52, a real (noncensored) data point.
flip <- 100; T <- 52 # The flipping value and the threshold
LC <- flip - life.time # convert the data to left-censored
RCpwm <- pwmRC(life.time, threshold=T)
pwm2lmom(vec2pwm(RCpwm$Abetas)) # A-type PWM --> A,L-moments

1 Hosking (1995) reports the count as 34 transistors in the title of table 29.2, but the 33 provided
values from that table are reproduced here.
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$lambdas
[1] 15.666663 6.202296 2.499668 1.513826 0.377672
$ratios
[1] NA 0.39589129 0.40302308 0.24407516 0.06089229

pwm2lmom(vec2pwm(RCpwm$Bbetas)) # B-type PWM --> B,L-moments
$lambdas
[1] 18.9696939 8.2064369 3.0736178 1.0279813 -0.5654883
$ratios
[1] NA 0.4326078 0.3745374 0.1252652 -0.0689079

The left-censored L-moments for the data in LC are computed in example 12–4 by
the pwmLC() function, which implements eqs. (12.14) and (12.15). The fliplmoms()
function provides the back flipping of the L-moments.

12–4
LCpwm <- pwmLC(LC, threshold=(flip - T))
LCpwmA <- vec2pwm(LCpwm$Aprimebetas)
LCpwmB <- vec2pwm(LCpwm$Bprimebetas)

# LClmrA <- pwm2lmom(LCpwmA) # These three commented out
# LClmrA$flip <- 100 # steps would also work. These steps
# fliplmoms(LClmrA) # document subtle details of use.

fliplmoms(pwm2lmom(LCpwmA), flip=flip)
$lambdas
[1] 15.666663 6.202296 2.499668 1.513826 0.377672
$ratios
[1] NA 0.39589129 0.40302308 0.24407516 0.06089229

fliplmoms(pwm2lmom(LCpwmB), flip=flip) # back-flip the L-moments
$lambdas
[1] 18.9696939 8.2064369 3.0736178 1.0279813 -0.5654883
$ratios
[1] NA 0.4326078 0.3745374 0.1252652 -0.0689079

Examples 12–3 and 12–4 show the A- and B-type L-moments and back-flipped A’- and
B’-type L-moments, respectively. These are congruent as judged by the equality of the
moments on upon one-to-one comparison. The reliability of the pwmLC() function is
demonstrated. J

12.4 L-moments of Right-Tail Censored Data by Indicator Variable

Section 12.2 considers the computation of L-moments in right-tail censoring circumstances
involving a known or unknown, but constant, censoring threshold T . Wang and others
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(2010) thoroughly describe a method to estimate L-moments based on a right-tail cen-
soring indicator, which has application in survival or failure analysis.2 For each of the
sample order statistics x1:n ≤ x2:n ≤ · · · ≤ xn:n of random variable X , it is known
that xj = min(Xj, T ) for a “noninformative” T (Wang and others, 2010). The noninfor-
mative nature of the censoring is very important and salient discussion is provided by
Helsel (2005, pp. 30–33). The censoring threshold is unknown, is not explicitly needed,
and T is itself possibly a random variable generated along side each realization of X :
xj = min(Xj, Tj). For the sample order statistics, let δj:n be indicators of right-tail cen-
soring: δj:n = 0 indicates that xj:n is uncensored, whereas, δj:n = 1 indicates that xj:n
is right-tail censored. Censoring that requires an indicator variable might occur as (1)
right-tail censoring by patients leaving (no longer participating in) survival studies after
medical procedures or as (2) left-tail censoring when multiple detection limits are used,
which is common with environmental quality (chemical) data.

Wang and others (2010) describe an L-moment estimation method, which relies on the
empirical survival function to determineweight factors on the observed (noncensored) val-
ues of the order statistics. These weight factors converge to those of the usual L-moments
as the number of censored values goes to zero. The empirical survival function is defined
as

Ŝj:n(x) =


1 j = 0 (special condition, see text)∏

Xj:n≤x
(

n−j
n−j+1

)1−δj:n X1:n ≤ x < Xn:n

0 x ≥ Xn:n

(12.16)

Using eq. (12.16) as the survival function in the role of a complemented3 plotting position,
the sample L-moments are computed by

λ̂r =
n∑
j=1

wj:n(r)Xj:n (12.17)

where wj:n(r) is a weight factor that is computed by

2 Wang and others (2010) consider survival data, which is strictly greater than or equal to zero,
but such a restriction is lifted here.
3 Plotting positions are defined in this dissertation as nonexceedance probabilities. The survival
function for the definitions in this section is an expression of exceedance probability; therefore,
the complement is needed. The complement is seen in the 1− Ŝ in eqs. (12.19) and (12.20).
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wj:n(r) =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
(B? −B?) (12.18)

where B is the CDF of the Beta distribution B(q, a, b) for quantile q and parameters a and
b. The two Beta distributions B? and B? are computed by

B? = B(1− Ŝj:n(Xj:n), r − k, k + 1) (12.19)

B? = B(1− Ŝj−1:n(Xj−1:n), r − k, k + 1) (12.20)

for parameters r− k and k+ 1. Readers are asked to note that the j− 1 term in eq. (12.20)
takes on the value 0 for the first order statistic (j = 1). There obviously is no zeroth
order statistic. Wang and others (2010) suggest X0:n = 0, but such a condition, implies
that X ≥ 0. The result of X0:n = 0 yields Ŝ = 1. Therefore, the “special condition” in
eq. (12.16) by the author (Asquith) has the same effect when B? is computed for the first
order statistic. The special condition lifts the X ≥ 0 restriction and extends X to the
real-number line R.

Wang and others (2010) conduct, with an Exponential distribution censoring Tj , a sim-
ulation study of Generalized Extreme Value and two Weibull distributions and report
that L-moment ratio diagrams still provide fair separation of τ̂3 and τ̂4. Wang and others
also show that the method of L-moments generally performs better than the method of
maximum likelihood for the Weibull distribution and strongly suggest use of L-moments
for samples sizes less than 50 and less than 55 percent of right-tail censored data.

Helsel (2005, p. 77) recommends (quote follows) that the Kaplan-Meier method by
Kaplan and Meier (1958) be used to compute summary statistics of right-tail censored
data “for data with up to 50 [percent] censoring” because of “its predominant use in
[nonenvironmental] disciplines” and “well-developed theory.” Part of the Wang and oth-
ers (2010) method is based on the Kaplan-Meier method. Helsel (2005, p. 67) reports that
“estimates of standard deviation are even of less interest than the mean in traditional sur-
vival analysis [because of] the skewness found in most survival [and environmental4]
data.” The author of this dissertation advocates that such a statement should no longer be
as applicable because of the support for L-moment computation on censored data because
of the developments of Wang and others (2010).

4 The author (Asquith) has added “environmental” as this data type is most certainly implied by
Helsel.
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Using R Using R

The lmomsRCmark() function provides support for computation of λ̂r and τ̂r for cen-
sored data by repeated calls to the lmomRCmark() function, which actually provides the
implementation of eq. (12.17).

Efron (1988) provides survival-time data (these data also are used by Wang and others
(2010) and thus utilized here in sequel) for 51 cancer patients in which 9 patients were
lost (dropped out) from the study before death. These data are shown in example 12–5

as variable Efron. The time in days is to the left of the pairing comma and the right-tail
censoring indicator is shown to the right of the comma. If the marking variable is 1, then
the time is right-tail censored for a given sample.

12–5
Efron <-
c(7,0, 34,0, 42,0, 63,0, 64,0, 74,1, 83,0, 84,0, 91,0,
108,0, 112,0, 129,0, 133,0, 133,0, 139,0, 140,0, 140,0,
146,0, 149,0, 154,0, 157,0, 160,0, 160,0, 165,0, 173,0,
176,0, 185,1, 218,0, 225,0, 241,0, 248,0, 273,0, 277,0,
279,1, 297,0, 319,1, 405,0, 417,0, 420,0, 440,0, 523,1,
523,0, 583,0, 594,0, 1101,0, 1116,1, 1146,0, 1226,1,
1349,1, 1412,1, 1417,1)

# Break up the data,censor pairs into two vectors
ix <- seq(1,length(Efron), by=2) # create indexing variable
Efron.data <- Efron[ix] # try repeating with a negation
Efron.rcmark <- Efron[(ix+1)]

# Ensure sorting and make sure to resort the indicator
# in case reader is experimenting with negation of the data
ix <- sort(Efron.data, index.return=TRUE)$ix
Efron.data <- Efron.data[ix]
Efron.rcmark <- Efron.rcmark[ix]

# Distinguish between the data when graphing
# by changing the plotting character
my.pch <- Efron.rcmark
my.pch[Efron.rcmark == 0] <- 1 # open circle
my.pch[Efron.rcmark == 1] <- 16 # solid circle

ub <- lmoms(Efron.data) # conventional sample L-moments
noRC <- lmomsRCmark(Efron.data) # ignore the censoring
RC <- lmomsRCmark(Efron.data, rcmark=Efron.rcmark)
PP <- pp(Efron.data) # plotting positions

ymax <- 1500
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censored.data <- Efron.data[Efron.rcmark == 1]
n <- 3*length(censored.data)
ix <- seq(1,n, by=3) # create indexing variable
barsPP <- barsQ <- vector(mode="numeric", length=n)
barsPP[ix] <- PP[Efron.rcmark == 1]
barsPP[(ix+1)] <- barsPP[ix]
barsPP[(ix+2)] <- NA
barsQ[ix] <- censored.data
barsQ[(ix+1)] <- ymax
barsQ[(ix+2)] <- NA

#pdf("rcindicator.pdf")
plot(PP, Efron.data, ylim=c(0,ymax), type="n",

xlab="NONEXCEEDANCE PROBABILIY", ylab="DATA")
lines(barsPP, barsQ, lty=3)
points(PP, Efron.data, pch=my.pch)
lines(PP, qlmomco(PP, lmom2par(noRC, type="kap")), lwd=3, col=8)
lines(PP, qlmomco(PP, lmom2par(ub, type="kap")))
lines(PP, qlmomco(PP, lmom2par(RC, type="kap")), lwd=2, lty=2)
legend(0,1000, c("Kappa by uncensored L-moments",

"Kappa by unbiased L-moments",
"Kappa by censored L-moments"),

bty="n", lwd=c(3,1,2), col=c(8,1,1), lty=c(1,1,2))
legend(0.052,810, c("Uncensored data",

"Right-tail censored data"),
bty="n", pch=c(1,16))

#dev.off()

The example computes three estimates of the sample L-moments: (1) the usual unbi-
ased; (2) those by eq. (12.17), but ignoring the right-tail censoring indicator; and (3) those
by eq. (12.17) using the right-tail censoring indicator. The Kappa distribution is fit to all
three L-moment sets. The results are plotted on figure 12.2. The censored data are distin-
guished as solid circles. The two solid lines show very similar Kappa fits from uniquely
different L-moment estimating functions—the reliability of the lmomsRCmark() function
(for uncensored data) is demonstrated. (The reliability of lmomsRCmark() for censored
data is evaluated in Section 12.5.) The Kappa distribution (dotted line) fit to the censored
L-moments plots considerably to the left as anticipated. The censored values have dotted
lines extending to the top of the plot from each in order to represent the interval in which
the actual data value resides. This plotting style for censored data follows that of Helsel
(2005, p. 52). J

For a demonstration of the generality of eq. (12.16) for−∞ < X <∞ compared to the
restriction byWang and others (2010) thatX ≥ 0, readers are encouraged to repeat exam-
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Figure 12.2. Comparison of three Kappa distribution fits to right-tail censored survival data (dotted
lines extended from reported limit) from example 12–5

ple 12–5 with negated Efron.data by using the operation Efron.data <-Efron[ix

]*-1 (note the use of *-1). J

12.5 L-moments of Left-Tail Censored Data by Indicator Variable

Right-tail censoring is extremely common in survival analysis or failure analysis and the
theory for accommodating such censoring is well developed (Helsel, 2005, p. 77) and
select parts of the theory are discussed in Sections 12.2 and 12.4. Left-tail censoring is
much more prevalent in the environmental and hydrologic sciences. Right-tail censoring
theory is readily extended to left-tail censoring through the method of flipping the data
to right-tail censored by subtraction of all data values from a constant M that must be
greater than or equal to the maximum data values:

yi = M − xi (12.21)
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where yi are the right-tail censored values and xi are the original and left-tail censored.
Statistical analysis, including computation L-moments, is made on the yi. Location esti-
mates of yi such as mean, median, and quantiles “must be retransformed back” (Helsel,
2005, p. 65) by back flipping through subtraction of the constantM that was used to flip
the data. Helsel (2005) and Lee (2009) provide arsenic concentration data in a data set
called Oahu. These data are used here and results of L-moment computation compared,
when possible, to parallel results from Helsel (2005, p. 65) or to the algorithms in the
NADA package by Lee (2009) that have no connection to those in lmomco.

Using R Using R

Example 12–6 loads the Oahu dataset and provides a summary of the data values along
with an indicator variableAsCen, which identifies, by a logical variable, those data that are
left censored. For example, the second observation is<1.0, whereas the third observation
is 1.7. TheKaplan-Meier nonparametricmethod is used inNADA to compute conventional
summary statistics. These are computed and set into the NADAfit variable. The results
show that the computed mean is about 0.949 milligrams per liter. The example ends
with an output of selected quantiles of the data. The flipping of the data was performed
automatically and retransformation (back flipping) is applied as necessary. These features
of the NADA package will be more formally defined when L-moments are explained in a
subsequent example (ex. 12–7 ).

12–6
library(NADA) # load the NADA package to get the Oahu dataset
data(Oahu) # load in arsenic data (left-tailed censored) in mg/L
print(as.list(Oahu)) # summarize these data
$As
[1] 1.0 1.0 1.7 1.0 1.0 2.0 3.2 2.0 2.0 2.8
[11] 2.0 2.0 2.0 2.0 2.0 0.7 0.9 0.5 0.5 0.9
[21] 0.5 0.7 0.6 1.5

$AsCen
[1] TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
[11] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
[21] FALSE FALSE FALSE FALSE

# Now place data into shorthand variable names
A <- Oahu$As # the arsenic concentration
Ac <- Oahu$AsCen # logical as to left-tailed censored or not

# Kaplan-Meier nonparametric estimate of mean and standard dev.
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NADAfit <- cenfit(Cen(A, Ac)) # cenfit and Cen from NADA package
print(NADAfit) # show the mean and standard deviation

n n.cen median mean sd
24.0000000 13.0000000 0.7000000 0.9489583 0.8068068

quantile(NADAfit) # show some quantiles to be compared later
5% 10% 25% 50% 75% 90% 95%
0.5 0.5 0.5 0.7 0.9 1.7 2.8

Example 12–7 continues to use the arsenic data in variable A and left-tail censoring
indicator in variable Ac. The example opens with two uses of the lmomsRCmark() func-
tion to compute the L-moments by (1) ignoring the left-tail censoring and (2) using the
left-tail censoring indicator. The example continues in parallel by fitting two Generalized
Normal distributions by the pargno() function. For the remainder of the discussion,
the censored L-moments in lmr.cen and the Generalized Normal fit in lmomcofit.

cen are of interest. The purpose of showing how to ignore the censoring (not setting
rcmark in lmomsRCmark()) is to provide a starting point for readers interested in fur-
ther self study.5 Although the flipwas specified (M = 5 milligrams per liter), the flip used
by the lmomsRCmark() function is explicitly extracted so as to hint that lmomsRCmark()
also can automatically choose a flip for the user. The left-censored mean is set into mean
and outputted. The result is 0.949, which precisely matches the left-censored mean com-
puted by the independent algorithms of Lee (2009), which is shown in example 12–6 .

12–7
lmr <- lmomsRCmark(A, flip=5) # not fully used here
lmr.cen <- lmomsRCmark(A, rcmark=Ac, flip=5) # used

lmomcofit <- pargno(lmr) # fit GNO dist to lmr
lmomcofit.cen <- pargno(lmr.cen) # fit the censored
# note, the L-moments and the GNO fit are RIGHT-TAIL CENSORED

# get the flip, in case not set in argument to lmomsRCmark()
flip <- lmr.cen$flip
mean <- flip - lmr.cen$lambdas[1] # back-flip
cat("# Mean is",mean,"\n") # this value matches earlier
# Mean is 0.9489583

The quantiles for the Oahu arsenic data were estimated nonparametrically in exam-
ple 12–6 . Example 12–8 estimates the quantiles via the distributional assumption and
5 In other words, the author is trying to provide subtle details so as to show other twists to the
distributional analysis that he thought would be neat to try for edification about censoring but
decided not further explore in this dissertation. These data are left-censored; the remainder of the
analysis is thus focused.
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fit of the Generalized Normal made in example 12–7 . The results in example 12–8 show
that the estimated quantiles for the selected F (nonexceedance probability) are quite simi-
lar6 to those in example 12–6 . This example of Generalized Normal quantiles is explicitly
chosen so as to show how the F must be mapped to S (exceedance probability, survival
probability, or S, see page 27) then used in the QDF by the qlmomco() function and the
result retransformed by back flipping (-qlmomco(1-F) , see Reflection Rule on page 36).
The previous two examples thus show the mechanics of fitting a distribution in the usual
fashion to the L-moments of left-censored data. The application to right-tail censored data
is more straightforward because the F 7→ S mapping and back flipping is not required.

12–8
F <- c(0.05, 0.10, 0.25, 0.75, 0.90, 0.95) # !! nonexceedance !!
# carefully note the back-flipping and more subtle,
# the survival (exceedance) probability (1-F)
# back flip and F --> S transform
Q <- flip - qlmomco(1 - F, lmomcofit.cen)
# compare quantiles in example before last
print(round(Q, digits=1))
[1] 0.5 0.5 0.5 1.0 1.6 2.3

Finally to conclude this demonstration of distributional analysis of left-tail censoring,
a graphical presentation of the results of the previous examples is highly informative.
In example 12–9 , another sequence of F is created. The NADAfit from example 12–6

is plotted (the stepped and solid line) and shown in figure 12.3. The empirical survival
distribution is shown (after back flipping) in the thin line solid line, and the dashed lines
represent 95-percent confidence bands. The example concludes by adding a thick solid
line of the fitted Generalized Normal distribution in lmomcofit.cen. The author again
emphasizes the two operations of F 7→ S and back flipping in the first argument to the
lines() function call.7 The thick line tracks through the stepped line, which confirms
the implementation of the lmomsRCmark() function.

12–9
F <- seq(0,1, by=0.01) # !! nonexceedance probability !!
S <- 1 - F # exceedance probability
X <- flip - qlmomco(S, lmomcofit.cen) # back flip

6 Equality is not anticipated, but if the fitted distribution is reasonable, then the computed non-
parametric and estimated quantiles should be “similar.”
7 The author calls special attention to these two operations for treatment of left-tail censoring as
more-than-cursory review of Helsel (2005) and Lee (2009) did not provide sufficient guidance and
several iterations were needed before the figure looked and was correct.

355



Texas Tech University,William H. Asquith, May 2011

#pdf("rcindicatorNADA.pdf")
plot(NADAfit) # creates plot with thin and dashed lines
lines(X, F, lwd=3)
#dev.off()
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Figure 12.3. Empirical survival function (thin line and dashed 95-percent confidence bands) by
Kaplan-Meier method from the NADA package to left-tail censored arsenic concentration in
Oahu dataset compared to fit of Generalized Normal distribution (thick line) by flipped and
right-censored L-moments by indicator variable from example 12–9

The flipping of the mean was shown in example 12–7 . However, additional adjust-
ments to the ensemble of L-moments are needed for higher-order distributional fit than
two-parameter distributions. Odd-order L-moments, such as τ̂3 and τ̂5 require, a change of
sign. Also τ̂2 requires computation by the usual λ̂2 divided by the back-flipped mean. The
lmomco package eases the hassle by providing the fliplmoms() function. This function
receives the L-moments from lmomsRCmark(), queries the flip, and returns back-flipped
L-moments. The process of selected quantile computation through a Generalized Nor-
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mal distribution fit and the nonparametric method in the NADA package is shown in
example 12–10 .

12–10
# Create some data with **multiple detection limits**
# A left-tail censoring problem--flipping is required.
fakedat1 <- 10^rnorm(5000, mean=0.5, sd=0.25)
fake1.left.censor <- fakedat1 < 2
fakedat1[fake1.left.censor] <- 2 # first limit

fakedat2 <- 10^rnorm(5000, mean=0.5, sd=0.25)
fake2.left.censor <- fakedat2 < 1
fakedat2[fake2.left.censor] <- 1 # second limit

# combine the data sets
fakedat <- c(fakedat1, fakedat2)
fake.left.censor <- c(fake1.left.censor, fake2.left.censor)

lmr.flipped <- lmomsRCmark(fakedat, flip=TRUE,
rcmark=fake.left.censor)

lmr.backflipped <- fliplmoms(lmr.flipped)
F <- c(0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95)
library(NADA)
NADAfit <- cenfit(Cen(fakedat, fake.left.censor))
NADAqua <- quantile(NADAfit)
LMRqua <- qlmomco(F, pargno(lmr.backflipped))
myquan <- data.frame(F=F, NADA=NADAqua, LMRqua=LMRqua)
print(myquan)

F NADA LMRqua
5% 0.05 1.220910 1.252923
10% 0.10 1.512826 1.530943
25% 0.25 2.147999 2.151226
50% 0.50 3.154967 3.157527
75% 0.75 4.670355 4.654464
90% 0.90 6.608210 6.616808
95% 0.95 8.168151 8.174190

The example simulated n = 10,000 values of a log-Normal distribution for which 5,000

of the values are subject to a T = 2 left-tail censoring threshold and 5,000 are subject to a
T = 1 left-tail censoring threshold. The output shows close agreement between selected
nonparametric quantiles of the NADA package to corresponding parametric quantiles of
the fitted Generalized Normal distribution. The distribution is fit to the L-moments in the
lmr.backflipped variable, which is derived from coupling the lmomsRCmark() and
fliplmoms() functions for left-tail censored distributional analysis. Further, because
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the LMRquamimic those of the independent and non-L-moment algorithms of theNADA
package; the reliability of the lmomsRCmark() function is demonstrated. J

12.6 Conditional Adjustment for Zero Values by Blipped-Distribution
Modeling

Some data types can contain a substantial fraction of exactly zero values. For example, a
time series of annual streamflow volume for a river located in a desert region might have
relatively few nonzero values because for many years the river basin might receive little to
no rainfall. In such circumstances, so-called blipped distributions (Gilchrist, 2000, p. 148)
can prove useful as a means to implement conditional probability adjustment. Blipped
distributions are a type of mixed distribution.

The use of blipped distributions can be used to accommodate zero values if particular
attention to the fit of the lower tail is needed. For investigation of large quantiles (right
tail) adjustments for zero values in the left tail can be of little consequence. For example, it
might be perfectly reasonable to have a fitted distribution, which includes the zero values
in the sample,8 produce negative quantiles for a strictly positive phenomena for the lower
quartile if the analyst requires quantile estimates at the F ≥ 0.90 level (the opposite tail).

However, if preservation of correct sign (positive for the discussion here) in the left tail is
needed, then conditional probability adjustment for zero values by blipped distributions
is useful and is made by

F (x) =

0 if x ≤ 0

p+ (1− p)G(x) if x > 0
(12.22)

and

x(F ) =

0 if 0 ≤ F ≤ p

xG[(F − p)/(1− p)] if F > p
(12.23)

where p is the probability of a zero value and G(x) is the CDF of the nonzero values,
and xG(G) is the QDF of the nonzero values, andG is a nonexceedance probability. The
distribution xG(G) does not have to be constrained to a lower bound of exactly zero, and
8 That is, the zero values are left in the sample when the L-moments are computed.
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the zero for x in eqs. (12.22) and (12.23) can be other constant lower bounds. For the
discussion here, the focus is on a zero lower bound without a loss of generality. The value
for p can be estimated from a sample as the ratio of the number of zero values to the total
sample size.

Using R Using R

The conditional adjustment for zero values is demonstrated by the sequence of exam-
ples and concomitant discussion that follow. To begin, example 12–11 generates an x > 0

sample of size n = 30 and an arbitrary fraction of zero values tp=0.20 (20 percent) to
control the number of zero values synthetically added to the sample. The Generalized
Pareto is selected for the example because the distribution has readily set lower bounds.
The parameters of the true GPA(150, 700, 0.03) are set by vec2par() and a random
sample fake.dat.nz of size n from this Generalized Pareto is drawn and sorted by
rlmomco() and sort() functions, respectively. The sapply() function truncates the
fake.dat.nz sample to positive values if any are present. However, for the example, the
lower bound of the Generalized Pareto is quagpa(0,tpga)= 150, so explicit truncation
is not needed as shown here. The last two steps in the final two lines: (1) generate the fake
data in fake.dat (the complete sample) by adding tp*n zero values using the rep()
function and (2) select the sample of greater-than-zero values.

12–11
n <- 30; tp <- 0.20
tgpa <- vec2par(c(150,700,0.03), type="gpa")
fake.dat.nz <- sort(rlmomco(n,tgpa))
fake.dat.nz <- sapply(fake.dat.nz,

function(x) { if(x < 0) return(0); return(x) })
fake.dat <- c(rep(0,tp*n), fake.dat.nz)
fake.dat.nz <- fake.dat.nz[fake.dat.nz > 0]

The distributional analysis of fake.dat continues in the following example 12–12

by (1) computing, for later plotting purposes, the Weibull plotting positions using pp(),
and (2) computing the L-moments using the lmoms() function on the complete sample
(variable lmr) and the sample values greater than zero (“nz”, nonzero; variable lmr.nz).

12–12
PP <- pp(fake.dat)
lmr <- lmoms(fake.dat)
lmr.nz <- lmoms(fake.dat.nz)
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The discussion continues in example 12–13 with the estimation of Generalized Pareto
parameters from the sample L-moments using the pargpa() function for both the com-
plete sample L-moments in lmr and the sample L-moments for the partial sample of
values greater than zero in lmr.nz. Finally, the fraction of zero values for the sample is
computed and set into the p variable.

12–13
PARgpa <- pargpa(lmr); PARgpa.nz <- pargpa(lmr.nz)

p <- length(fake.dat[fake.dat <= 0])/length(fake.dat)

Based on the previous three examples ( 12–11 – 12–13 ), a visual representation of the
blipped Generalized Pareto distribution is produced in example 12–14 and shown in fig-
ure 12.4. The plotting position values in PP of the complete sample provide values for F .
These values also will be used for drawing QDFs of the distributions. The quagpa() func-
tion returns the Generalized Pareto quantiles, and the z.par2qua() function adheres
to eq. (12.23) and performs as a blipped-distribution implementation of the par2qua()
function. The par2qua() function internally dispatches the parameter lists PARgpa or
PARgpa.nz to the quagpa() function to compute Generalized Pareto quantiles.

12–14
#pdf("zero1.pdf")
plot(qnorm(PP), fake.dat,

xlab="STANDARD NORMAL DEVIATE", ylab="QUANTILE")
lines(qnorm(PP),quagpa(PP,PARgpa), lty=2) # dashed line
F <- PP # set nonexceedances to those in PP
Q <- z.par2qua(F,p,PARgpa.nz)
lines(qnorm(F),Q, lwd=2) # solid and thicker line
legend(-1.5, 1500, lty=c(2,1),

c("GPA by complete sample",
"GPA by blipped distribution"))

#dev.off()

As shown in figure 12.4, the use of blipped-distribution modeling of the Generalized
Pareto provides an inherently better fit to the simulated data than the Generalized Pareto
fit to the complete sample. The better fit in the left tail is obvious, but it is important to
remark that the two fitted distributions are indistinguishable from each other in the right
tail. Thus, if the analyst’s interest is restricted to right-tail estimation, then little benefit
would be gained using blipped-distributionmodeling. In conclusion, blipped-distribution
modeling builds a more complex distribution model, but the process of implementation
is relatively straightforward and might be a useful tool for some circumstances. J
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Figure 12.4. Conditional adjustment for zero values by blipped-distribution modeling of the Gener-
alized Pareto from example 12–14

12.7 Exploration of Quantile Uncertainty

Assuming that one has at their disposal unbiased and generally small sampling variance
estimators, the uncertainty in a prediction of individual quantiles from a given data set
can be thought of as being produced by two components: sampling error and model-
selection error, which is the error induced by having to choose or select a distribution that
adequately represents the unknown parent distribution.

Assuming that the proper distribution has been chosen for a particular data set, sam-
pling error is the uncertainty associated with sample size—more accurate quantile esti-
mates are acquired as sample size increases. It requires little emphasis that smaller sam-
ples contain less information than larger samples. On the other hand, for a given sample
size, model-selection error is the error associated with the choice of distribution. The
next three sections provide informative explorations of quantile uncertainty by these two
sources of error. These sections do not by any means attempt an exhaustive analysis of
quantile uncertainty, but in the context of readily implemented statistical simulation, the
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sections should provide readers with a look and feel of how much is unknown (uncer-
tain) in distal tail estimates of distributions fit to samples. For purposes here, the distal tail
begins at about a standard-normal quantile (deviate) or qnorm(pnorm(1)) or F ≈ 0.84.

12.7.1 Exploration of Sampling Error for a Single Data Set

An exploration of sampling error is initiated in example 12–15 by loading in the annual
peak streamflow data for U.S. Geological Survey streamflow-gaging station 08151500
Llano River at Llano, Texas using the data() function. The streamflow data are placed
into the Qdat variable, and the data are shown in figure 12.5.

12–15
#pdf("llano1.pdf")
data(USGSsta08151500peaks) # from lmomco package
Qdat <- USGSsta08151500peaks$Streamflow # a smaller variable name
plot(Qdat, xlab="YEAR NUMBER", ylab="PEAK STREAMFLOW, IN CFS")
#dev.off()

Next, in example 12–16 , the data are sorted into the variable Qs, the Weibull plotting
positions are computed by pp(), the sample L-moments are computed by lmoms(), and
Wakeby distribution parameters by parwak() are placed into the variable PARwak. The
str() function is used to report the L-moments and Wakeby parameters. The results are
listed in table 12.1.

12–16
Qs <- sort(Qdat); PP <- pp(Qdat); lmr <- lmoms(Qdat)
PARwak <- parwak(lmr)
str(lmr); str(PARwak) # results shown in body of text

Table 12.1. L-moments of annual peak streamflows for Llano River at Llano, Texas (1940–2006)
and Wakeby distribution parameters
λ̂1 λ̂2 τ̂3 τ̂4 τ̂5 ξ α γ β δ

51, 160 28, 900 0.3925 0.1701 0.0962 972.0 −64, 170 1.616 81, 800 −0.09491

A by-now-familiar plot of the empirical distribution and a fitted Wakeby distribution
is generated by example 12–17 and shown in figure 12.6. For this particular data set,
the Wakeby distribution provides a generally acceptable fit to the empirical distribution.
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Figure 12.5. Time series of annual peak streamflows for Llano River at Llano, Texas (1940–2006)
from example 12–15

The data have a nearly 2.5-order of magnitude range, yet the distribution is fit in the
untransformed units of the data—logarithmic transformation is not used in the analysis.

12–17
#pdf("llano2.pdf")
plot(qnorm(PP),log10(Qs),

xlab="STANDARD NORMAL DEVIATE",
ylab="LOG10 STREAMFLOW, IN FT^3/S")

lines(qnorm(PP),log10(quawak(PP,PARwak)), lwd=3, lty=1)
legend(-2,5.5, c("Wakeby by L-moments"),

lwd=c(3), lty=c(1), box.lty=0, bty="n")
#dev.off()

J

The gen.freq.curves() function is a high-level function that drives simulation by
the genci() function (called internally) for a specified sample size and a given parent
distribution. The distribution is specified by an lmomco parameter list (see page 163 and
ex. 7–1 ). The gen.freq.curves() function collects intermediate results and provides
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Figure 12.6. Empirical distribution and fitted Wakeby distribution to annual peak streamflows for
Llano River at Llano, Texas from example 12–17

options for graphical visualization. The number of simulations and other features that
generally control graphical output are set by named arguments.

Example 12–18 demonstrates the gen.freq.curves() function using a sample size
of n=67 for 100 distinct simulations (nsim=100) from the Wakeby parent. With each
drawing, the sample L-moments and estimatedWakeby parameters of the simulated sam-
ple are computed and each resulting ith Wakeby for 1 ≤ i ≤ nsim is depicted on the plot
in figure 12.7. The nonexceeds() function is used to generate a convenient vector of F
values for drawing of theWakeby parent by the quawak() function. The example ends by
superimposing the true parent (dashed line) on the 100 simulated Wakeby distributions.

12–18
F <- nonexceeds()
n <- length(Qdat) # 67 years of record

#pdf("llano3.pdf", version="1.4")
gen.freq.curves(n, PARwak, nsim=100,

asprob=TRUE, col=rgb(0,0,0,0.08))

lines(qnorm(F), quawak(F,PARwak), lty=2, lwd=3)
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legend(-2.5,350000, c("Wakeby by L-moments"),
lwd=c(3), lty=c(2),
box.lty=0, bty="n")

#dev.off()
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Figure 12.7. Study of 100 simulations of sample size of n = 67 for indicated Wakeby parent from
example 12–18

Example 12–18 makes use of semi-transparency, which can be provided by the portable
document format (PDF) device pdf(). The transparency is accessed through specification
of a fourth parameter to the rgb() color function. The “fuzziness” or grayness of the
simulated distributions in figure 12.8 is a graphical depiction of sampling error. J

For a demonstration of the influence of sample size, it is informative to repeat the exam-
ple 12–18 in 12–19 for a sample size of n = 20 (fig. 12.8) and then again in example 12–20

for n = 200 (fig. 12.9). The dramatic increase in variability at a given F in the distribution
of the simulated distributions between figures 12.8 and 12.9 exist because of the different
sample sizes. In fact at n = 20, radically different curvatures of a few simulated distri-
butions compared to the curvature of the Wakeby parent distribution are visible. Some
distributions have upper limits much less, and conversely much larger, than the parent
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distribution. It must be remarked that the algorithm used to fit theWakeby includes three
solution styles: (1) the ξ parameter is estimated, (2) the ξ parameter is set to ξ = 0, or (3) a
Generalized Pareto distribution is fit instead if either of the other two solutions are not
viable.

12–19
#pdf("llano4.pdf", version="1.4")
gen.freq.curves(20, PARwak, nsim=100,

asprob=TRUE, col=rgb(0,0,0,0.08))
lines(qnorm(F), quawak(F,PARwak), lty=2, lwd=3)
legend(-2.5,350000, c("Wakeby by L-moments"),

lwd=c(3), lty=c(2), box.lty=0, bty="n")
#dev.off()
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Figure 12.8. Study of 100 simulations of sample size n = 20 for indicated Wakeby parent from
example 12–19

12–20
#pdf("llano5.pdf", version="1.4")
gen.freq.curves(200, PARwak, nsim=100,

asprob=TRUE, col=rgb(0,0,0,0.08))
lines(qnorm(F), quawak(F,PARwak), lty=2, lwd=3)
legend(-2.5, 350000, c("Wakeby by L-moments"),
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lwd=c(3), lty=c(2), box.lty=0, bty="n")
#dev.off()

J
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Figure 12.9. Study of 100 simulations of sample size n = 200 for indicated Wakeby parent from
example 12–20

For examples 12–18 – 12–20 , the emphasis is on visualization of sampling error as a
function of sample size. It might be more useful to acquire an actual metric of sampling
error for a range of sample sizes for a given quantile. These quantile sampling errormetrics,
be they σ̂2 (sample variance), σ̂ (standard deviation), λ̂2 (L-scale), or measures of relative
variability such as ĈV and τ̂2, could be used to determine a sample size sufficiently large
to meet some specified tolerance.

Governed by the theme of this dissertation, the L-moments of the distribution of a
selected quantile are considered. Example 12–21 computes τ̂2 of the F = 0.99 quantile
from the fittedWakeby distribution in variable PARwak. The output shows that τ̂2 = 0.116

(far right entry in 12–21 ) for the x0.99 quantile or λ̂2 = 30,900 cubic feet per second.
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12–21
genci(PARwak,n=67,F=0.99,nsim=100) # nsim should really be larger

nonexceed_prob lower true upper lscale lcv
1 0.99 183377.9 266462.1 363678.4 30921.80 0.1160457

The τ̂2 = 0.116 for x0.99 will be used again in the next section.

12.7.2 Exploration of Sampling Error for a Regional Data Set

Approximately 670 U.S. Geological Survey streamflow-gaging stations provide 8 or more
years of annual peak streamflow data for undeveloped watersheds in a study area encom-
passing Texas, eastern New Mexico, and part of the bordering areas near Texas for Okla-
homa and Louisiana. The λ̂1, λ̂2, τ̂3, τ̂4, and τ̂5 for each station were computed by Asquith
and Roussel (2009). By taking λ̂1 = 1 and λ̂2 = τ̂2, a dimensionless Wakeby distribution
or regional growth curve for the study area can be estimated from weighted.mean()

values for the sample L-moments. The number of years of record or data for each sta-
tion constitute weight factors as also done in example 11–7 within a different context.
Although intermediate computations are not shown, the regional L-moments and corre-
sponding parameters of the Wakeby are listed in table 12.2 in which the listed parameter
values are computed in example 12–22 .

12–22
L <- vec2lmom(c(1,0.505,0.394,0.250,0.159))
W <- parwak(L) # compute Wakeby parameters

Table 12.2. Regional L-moments and equivalent Wakeby parameters for dimensionless distribution
of annual peak streamflow in Texas
λ̂1 τ̂2 τ̂3 τ̂4 τ̂5 ξ α β γ δ

1 0.505 0.394 0.250 0.159 −0.0266 1.100 6.105 0.692 0.206

Continuing in example 12–23 and for purposes of illustration, the variability of quantile
estimates at the F = 0.50 and 0.99 levels are of interest and are set into F. A sequence of
sample sizes from 10 to 100 by increments of 2 is set into needed.n. The LCV data frame
is created by the data.frame() function, and the data frame will be used to hold the
sample size and τ̂2 for each of the F values. The core function of the example is to iterate
through each sample size, call the genci() function, and retrieve the results into LCV.
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12–23
F <- c(0.50,0.99); needed.n <- seq(10,14, by=2); nsim <- 20
LCV <- data.frame(SampleSize = vector(mode="numeric"),

Q50lcv = vector(mode="numeric"),
Q99lcv = vector(mode="numeric"))

for(n in needed.n) {
cat(c("SAMPLESIZE=",n,

" SIMULATIONSIZE=",nsim,"\n"))
CI <- genci(W, n, F=F, nsim=nsim)
LCV[n,] <- c(n, CI$lcv[1:2])

}

The primary purpose of the genci() function is to estimate, for a specified distribution
and sample size, the lower and upper limits of a specified confidence interval for specific
quantile values using simulation. These computations are shown in example 12–24 .

12–24
genci(W,n=16,nsim=200,F=(16/(16+1)))

nonexceed_prob lower true upper lscale lcv
1 0.9411765 1.039137 2.816574 3.33673 0.3940406 0.1399006

In the example and by default, the genci() function also returns the λ̂2 and τ̂2 values.
The quantile values are specified by a vector of F values. Although in the example, only a
single F = 0.941 is used. The parameters of the parent distribution (the Wakeby distribu-
tion in this case) are provided as the first argument. The genci() function is a wrapper
on qua2ci() function, which is not shown in the example. The returned contents of the
genci() function are shown in the last line of example 12–24 .

12–25
my.min <- min(LCV$Q50lcv, na.rm=TRUE)
my.max <- max(LCV$Q99lcv, na.rm=TRUE)
#pdf("regwak_nsim20.pdf")
plot(LCV$SampleSize, LCV$Q99lcv, ylim = c(my.min, my.max),

xlab = "SAMPLE SIZE",
ylab = "L-CV AT INDICATED QUANTILE")

points(LCV$SampleSize, LCV$Q50lcv,pch=16)
#dev.off()

12.7.3 Exploration of Model-Selection Error

If a single distribution is fit to some data, thenmodel-selection error at a given x(F )model is
a bias computed as the difference between the selected distribution and the parent. How-
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Figure 12.10. Comparison of simulated τ2 values for 50th (open circles) and 90th (closed circles)
percentiles of regional Wakeby parent using 20 simulations for indicated sample size from exam-
ple 12–25

ever, this bias can be quite difficult to assess in most circumstances because the parent
distribution is unknown. If multiple distributions, which could each arguably be appro-
priate, are fit, then it is possible to compute measures of variability from the multiple fits
at each x(F ) of interest. This variability subsequently can be compared to the sampling
variability. The variability of x(0.99) is the subject of this section.

Wallis (1988, pp. 304–305) refers to the topic of this section “differences inx(F ) as a func-
tion of choice of distribution.” Wallis proceeds to summarize a study of the T = 106 year
annual maximum wind speed event for Corpus Chrisi, Texas in which the Extreme Value
Type I (EV I, Gumbel in this dissertation) and Extreme Value Type II (EV II, Fréchet, which
is special case of Generalized Extreme Value in this dissertation) distributions are each
used. Wallis states “The EV I estimate for T = 106 event equals the commonly observed
maximumwind speed for large hurricanes, while the comparable value for the EV II distri-
bution is almost half the velocity needed to escape from the Earth’s field of gravity!” (The
explanation point is Wallis’.) Wallis concludes that “neither estimate appears particularly
reasonable,” and other analysis could be done. The author of this dissertation cites this
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Figure 12.11. Comparison of simulated τ2 values for 50th (open circles) and 90th (closed circles)
percentiles of regional Wakeby parent using 2,000 simulations for indicated sample size from
repeating of examples 12–23 and 12–25 using nsim=2000

example as a case where two reasonably chosen distributions yield radically divergent
far-tail quantile estimates.

In example 12–26 , an exploration of model-selection error is made using the five three-
parameter distributions supported by lmomco. The data chosen are the annual peak stream-
flow for for U.S. Geological Survey streamflow-gaging station 08151500 Llano River at
Llano, Texas are computed. These data are shown in figures 12.5 and 12.6.

Example 12–26 begins by the computation of the sample L-moments, computation of
Weibull plotting positions, and creation of a list of distribution abbreviations in variable
dist. The example continues with creation of a grv() function to compute Gumbel
Reduced Variates and setting of a familiar sequence of F . The Gumbel Reduced Variates
are used to dilate the horizontal axis. A five-element vector QsG is initialized for the five
distributions to store estimates of the 99th-percentile annual peak streamflow.

12–26
data(USGSsta08151500peaks) # from lmomco package
Qdat <- USGSsta08151500peaks$Streamflow # a smaller name

371



Texas Tech University,William H. Asquith, May 2011

lmr <- lmoms(Qdat); weibullpp <- pp(Qdat)
dist <- c("gev", "gno", "glo", "gpa", "pe3")

G <- 0.99 # for dotted vertical line in a plot
grv <- function(x) return(-log(-log(x))) # Gumbel RV
F <- nonexceeds()
QsG <- vector(mode="numeric", length=length(dist))
#pdf("modelselection.pdf")
plot(grv(weibullpp), sort(Qdat), log="y",

xlim=c(0,5), ylim=c(1e4,4e5),
xlab="GUMBEL REDUCED VARIATE, -log(-log(F))",
ylab="STREAMFLOW, CFS")

for(i in 1:length(dist)) {
ifelse(dist[i] == "gpa", lty <- 1, lty <- 2)
QDF <- qlmomco(F, lmom2par(lmr, type=dist[i]))
lines(grv(F), QDF, lty=lty)
QsG[i] <- QDF[F == G]

}
lines(c(grv(G),grv(G)), c(1e4,4e5), lty=3)
#dev.off()

The example continues by plotting the data and the five fitted distributions as shown
in figure 12.12. The fitted distributions are shown as dashed lines and a solid line
(the Generalized Pareto). The Generalized Pareto distribution is plotted differently
because the L-moment ratio diagram (but not shown here), but which can be created
by the nested functions plotlmrdia(lmrdia()) and points(lmr$ratios[3], lmr
$ratios[4]), shows that {τ̂3, τ̂4} from the L-moment ratios in variable lmr plot closest
to the Generalized Pareto trajectory. This distribution thus is specifically singled out for
the plot. Finally, a dotted vertical line is drawn at F = 0.99. It is the variation in the solid
and dashed lines at this vertical that will be used to express model-selection error.

The values stored in the QsG variable created in example 12–26 represent five separate
estimates of x(0.99) from five different distributions. The basic summary statistics of
QsG are shown in example 12–27 along with the standard deviation. In the example,
the L-moment estimate of σ by multiplication of

√
π also is shown. These two estimates

suggest that the standard error of the x(0.99) estimate, which is attributed to choice of an
unknown, but three-parameter, distribution model, is about 17,000 cubic feet per second.
The example ends with the reporting of τ2model = 0.034, which is an expression of the
relative error.
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Figure 12.12. Empirical distribution and five fitted distributions to annual peak streamflows for
Llano River at Llano, Texas from example 12–26. The dotted vertical line is drawn at F = 0.99
(the 100-year recurrence interval).

12–27
print(summary(Qs))

Min. 1st Qu. Median Mean 3rd Qu. Max.
279400 292700 305600 302500 315500 319400

print(sd(Qs)) # standard deviation
[1] 16548.20

QsGlmr <- lmoms(QsG)
print(sqrt(pi)*QsGlmr$lambdas[2]) # sigma by L-moments
[1] 18230.22

print(QsGlmr$ratios[2]) # L-CV
[1] 0.03399913

J

Finally, in example 12–21 , the relative sampling variability of the five-parameter
Wakeby distribution, based on limited simulations, is reported as τ2sampling = 0.116. This
can be compared and combined with τ2model = 0.034. Comparing the two, it is seen
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that the relative variation because of sampling in the x(0.99) estimate is about 3.4 times
larger than the relative variation from deciding amongst the 5 three-parameter distribu-
tions. Combining the two variations, the relative variation in the x(0.99) estimate is about
τ2 =

√
(0.116)2 + (0.034)2 = 0.121.

If the best estimate of the analyst doing magnitude and frequency work for this river,
including the distributional work in this section and Section 12.7.1 along with other engi-
neering analyses (perhaps interpretations of a rainfall and runoff model), is say 300,000

cubic feet per second, then the estimated uncertainty in the context of the more familiar
standard deviation is σ = 300,000 × 0.121 ×

√
π = 64,000 cubic feet per second. The

analyst then might write the x(0.99) estimate as 300,000± 64,000 cubic feet per second.

12.8 Product Moments versus L-moments for Estimation of Pearson Type
III Distributions

The three-parameter Pearson Type III distribution is a popular distribution for analysis
of hydrologic data (U.S. Water Resources Council, 1981). Ding and Yang (1988) consider
the Pearson Type III distribution in the context of probability-weighted moments. The dis-
tribution is attractive for making product moment and L-moment comparisons because
the distribution is skewed and the product moments are the parameters of the distribu-
tion. In turn, the first three L-moments can be represented as product moment equiva-
lents through the Pearson Type III distribution. The comparison of product moments and
L-moment computations, thus, is readily made using the methods of product moments
and L-moments. Readers are asked to recall that the method of product moments uses
conventional sample mean, standard deviation, and skew as direct estimates for Pearson
Type III parameters. Whereas, the method of L-moments uses the sample mean, L-scale,
L-skew, and numerical methods to estimate the Pearson Type III parameters.

After additional commentary (additional commentary for this dissertation) concerning
logarithmic transformation, this section describes a simulation study (Section 12.8.2) of a
Pearson Type III having zero mean and ranges of standard deviation (0.1 to 10) and skew
(−5 to +5). These ranges provide for a comparison of product moments and L-moments
for Pearson Type III parameter estimation. For the simulations, sample sizes of 10, 20, 40,
60, and 100 are used. The results show that L-moments outperform, in a Pearson Type III
context, the product moments in terms of bias.

374



Texas Tech University,William H. Asquith, May 2011

An example application of product moment and L-moment parameter estimation for
Pearson Type III and log-Pearson Type III for a small sample for a hypothetical right-tail
heavy distribution also is provided (Section 12.8.3). Additional joint simulations of right-
tail heavy Pearson Type III and log-Pearson Type III distributions show preference to a
Pearson Type III fit by L-moments whether the parent distribution is Pearson Type III or
log-Pearson Type III.

12.8.1 Logarithmic Transformation

The limitations of the method of product moments for considerably skewed distributions
are substantial. As a result, log10 transformations of the data often are recommended to
reduce skewness and increase data symmetry, and as a result, increase the utility of the
method of moments. In a widely distributed book, Stedinger and others (1993, chap. 18,
p. 5) succinctly comment on logarithmic transformation and state

A logarithmic transformation is an effective vehicle for normalizing values
which vary by orders of magnitude, and also for keeping occasionally large val-
ues [high outliers] from dominating the calculation of product-moment estima-
tors. However, the danger with use of logarithmic transformations is that unusu-
ally small observations [low outliers] are given greatly increased weight. This
is a concern if it is the large events that are of interest, small values are poorly
measured, small values reflect rounding, or small values are reported as zero if
they fall below some threshold.

When the Pearson Type III is fit to the product moments of log10 transformed data,
it is referred to as the log-Pearson Type III. In particular, for many applied hydrologists
and engineers (at least in the United States), the log-Pearson Type III is understandably
considered as the default (often only) distribution to use for the skewness of hydro-
logic data. A contributing reason is the log-Pearson Type III role in many analyses of
annual peak streamflow (U.S. Water Resources Council, 1981); the techniques therein
are well known within the discipline of flood magnitude analysis. Further, prepackaged
“frequency” supporting software, such as PeakFQ by U.S. Geological Survey (2007a) or
SWSTAT by U.S. Geological Survey (2007b), emphasize log-Pearson Type III and product
moment usage. A common practice, therefore, is for the analyst to logarithmically trans-
form (log10 transform) the phenomena being investigated and fit the log-Pearson Type III
using product moments.
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When log10 transformation is used, analysis of data containing zero or negative values
becomes more complicated. A more philosophical drawback is that analysis is based in
log10 space, but real-world implementation of statistical results, such as flood volume or
rainfall magnitude, is needed in linear space. The philosophical topic of transformation
is briefly discussed by Vogel and Fennessey (1993, p. 1750) in the context of goodness-
of-fit of probability distributions and L-moment ratio diagrams. Their discussion can be
summarized by this author (Asquith), “why transform if transformation is not needed
or does logarithmic transformation obscure otherwise salient features of the data?” A
benefit of log10 transformation, however, is that logarithmic transformation can simplify
analysis of strictly positive data as untransformation of a distribution of logarithms does
not produce negative values. However, the blipped distribution modeling described in
Section 12.6 could mitigate for negative values as well as zero values.

12.8.2 Simulation Study of Pearson Type III Parameter Estimation

A comparison of product and L-moment parameter estimation for a wide range of prod-
uct moment σ (standard deviation) and γ (skew) for a Pearson Type III parent with µ = 0

(mean), without a loss of generality, is made by simulation in this section. The simulation
study, forwhich core logic is seen in example 12–28 , considered 21population values forσ
(σ = 0.1, 0.5, 1.0, . . . , 10) and 21 population values for γ (γ = −5.0,−4.5, . . . , 4.5, 5.0).
For each unique pairing of σ and γ and µ = 0, sample sizes n (n = 10, 20, 40, 100)
were randomly drawn from the Pearson Type III parent. For each simulated sample, the
sample product moments (µ̂pm, σ̂pm, γ̂pm) and sample L-moments (λ̂1, λ̂2, λ̂3) were com-
puted. The sample L-moments thenwere converted to Pearson Type III parameters to form
L-moment-based “product moments” (µ̂λ, σ̂λ, γ̂λ). The computation of µ̂pm, σ̂pm, γ̂pm and
µ̂λ, σ̂λ, γ̂λ for each σ and γ pairing was repeated 10,000 times. The mean value for the
10,000 values of each of the six statistics were computed. These mean values provide the
coordinates necessary to render the arrows in figure 12.13–12.16.9

12–28
# mu=0, sigma=10, gamma=5
pe3pars <- vec2par(c(0,10,5), type="pe3")
n <- 10 # sample size

9 These figures were rendered in METAPOST using a custom software program in Perl written
by the author.
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nsim <- 10000 # number of simulations
pm.est.sd <- vector(mode = "numeric") # pm estimated sigma
pm.est.g <- vector(mode = "numeric") # pm estimated gamma
lm.est.sd <- vector(mode = "numeric") # L-moment estimated sigma
lm.est.g <- vector(mode = "numeric") # L-moment estimated gamma
for(i in seq(1,nsim)) { # loop the number of simulations

Q <- quape3(runif(n),pe3pars) # draw n samples from parent
lmr <- lmoms(Q) # compute L-moments
pmr <- pmoms(Q) # compute product moments
estpars <- parpe3(lmr,checklmom=FALSE) # est. PE3 parameters
# store the four sample values into the vectors
pm.est.sd[i] <- pmr$sd
pm.est.g[i] <- pmr$skew
lm.est.sd[i] <- estpars$para[2]
lm.est.g[i] <- estpars$para[3]

}
# compute sample means of the sample statistics
pm.sd <- mean(pm.est.sd); pm.g <- mean(pm.est.g)
lm.sd <- mean(lm.est.sd); lm.g <- mean(lm.est.g)
# display the results
cat(c("SD =",10," pmSD =",pm.sd," lmSD =",lm.sd,"\n"))
cat(c(" G =",5, " pmG =",pm.g, " lmG =",lm.g,"\n"))

# The author’s computer, after rounding, produces:
SD = 10 pm.estSD = 7.64 lm.estSD = 12.27
G = 5 pm.estG = 2.18 lm.estG = 6.03

Figures 12.13–12.16 depict the simulated σ and γ parameter space, and each figure rep-
resents a different sample size. The graph on the left of each figure represents the results
using product moments and the right graph represents the results using L-moments. The
arrows lead from the population values to the means of the 10,000 sample statistics. The
arrow lengths (arrow head plus shaft) represent bias; long arrows represent large bias
and short line segments represent small bias. For a given estimation technique (product
moment or L-moment), the arrow lengths systematically shorten as sample size increases.
If the length is less than the arrow-head length, then the arrow head is not shown; for this
dissertation then the condition of “unbiased” is represented by the absence of the arrow
head.

Drawing attention to the left graph of figure 12.13 for n = 10, and by generality, the
product moment (left) graphs in figures 12.14–12.16, the arrows are oriented in the σ−

direction (horizontal to the left) and increasingly angled toward the left as σ increases. The
left graphs show that σ is reliably estimated for small σ and γ, but σ is substantially under-
estimated by the product moments as σ increases. The arrows are symmetrically oriented
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toward zero in the γ direction (vertical), which shows that γ is systematically underesti-
mated by the product moments. The opposite situation is shown for the L-moment case.
The arrow lengths for the L-moments indicate that the magnitude of σ and γ are overesti-
mated. However, the arrow lengths for the L-moments generally are much shorter, which
demonstrates superior small sample performance of the sample L-moments.

For n = 10 (fig. 12.13), use of either product moments or L-moments can be questioned,
except in the near symmetrical situation (γ = 0) for product moments and approximately
σ ≤ 8 and |γ| < 3 for the L-moments. By n = 20 (fig. 12.14), the L-moments provide
essentially unbiased estimation of Pearson Type III parameters for approximately σ ≤ 9

and |γ| < 4. Only in the central region (|γ| close to 0) do the product moments perform
well. By n = 40 (fig. 12.15), the sample L-moments are effectively unbiased for much of
the parameter space. However, the sample product moments continue to be substantially
biased for approximately |γ| > 2. By n = 100 (fig. 12.16), which often would be consid-
ered a large sample size in many hydrologic data sets, the product moments continue to
show substantial bias.

Several observations are made for the σ and γ parameter space. L-moments for Pear-
son Type III parameter estimation appear superior to product moments. The author
acknowledges that this conclusion is not a particularly new contribution in the sense
that L-moments already are documented to have more robust sampling properties than
the product moments. However, the simulations, in particular, dramatically demonstrate
that the skewness of the data in a Pearson Type III context is more reliably estimated
using L-moments. As a general judgement, sample sizes of at least 40 (60 would be bet-
ter) are sufficient for reliable estimation of the variability and skewness for Pearson Type
III-distributed data. The sample size judgement compares favorably with Guttman (1994)
who concluded that the measure of “dispersion” (λ̂2) for monthly rainfall data required
40 to 50 samples and L-skew of τ̂3 required 60 to 70 samples.

12.8.3 Further Evaluation of Pearson Type III Parameter Estimation

Asquith and others (2006, table 5) in an extensive analysis of storm statistics for hourly
rainfall data in Texas concluded that the L-moments of rainfall depth for storms defined by
a 72-hour minimum interevent time are λ1 = 24.5 millimeters (mm), λ2 = 14.2 mm, and
τ3 = 0.452. These L-moments were derived from data recorded by 533 rainfall stations
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Figure 12.13. Bias of sample standard deviation and skew statistics for a Pearson Type III parent
and sample size 10. Left graph is for product moment estimation. Right graph is for L-moment
estimation. Arrows lead from the population values to the means of 10,000 sample statistics.
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Figure 12.14. Bias of sample standard deviation and skew statistics for a Pearson Type III parent
and sample size 20. Left graph is for product moment estimation. Right graph is for L-moment
estimation. Arrows lead from the population values to the means of 10,000 sample statistics.
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Figure 12.15. Bias of sample standard deviation and skew statistics for a Pearson Type III parent
and sample size 40. Left graph is for product moment estimation. Right graph is for L-moment
estimation. Arrows lead from the population values to the means of 10,000 sample statistics.
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Figure 12.16. Bias of sample standard deviation and skew statistics for a Pearson Type III parent
and sample size 100. Left graph is for product moment estimation. Right graph is for L-moment
estimation. Arrows lead from the population values to the means of 10,000 sample statistics.
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throughout Texas with a combined data record in excess of 1.03 million values. The equiv-
alent Pearson Type III parameters for these L-moments are µ = 24.5 mm, σ = 31.2 mm,
and γ = 2.75.

These parameters define a PE3′ parent, PE3′(24.5 mm, 31.2 mm, 2.75), of storm depth.
A random sample of n = 20 was drawn from this parent to represent somewhat heavy-
tailed hydrologic data for example purposes. The random sample is shown in figure 12.17
along with the parent PE3′distribution.10 The sample product moments are µ̂pm = 29.0,
σ̂pm = 35.0, γ̂pm = 1.89, and the sample L-moments, expressed as Pearson Type III
parameters, are µ̂λ = 29.0, σ̂λ = 38.4, γ̂λ = 2.70. These two Pearson Type III distribu-
tions [PE3pm(29.0, 35.0, 1.89) and PE3λ(29.0, 38.4, 2.70)] are shown in figure 12.17 by
the black curves.

The parent distribution is heavy tailed with γ = 2.75. The results in Section 12.8.2
show that the sample product moments have considerable bias for data having this much
skew. Therefore, following a step that a practitioner might (should?) do, and to facili-
tate comparison purposes, log10 transformation of the data was made, the sample prod-
uct moments and L-moments again were computed, and log-Pearson Type III fit to both
moment types. The two log-Pearson Type III distributions [LP3pm(1.13, 0.599,−0.103)

and LP3λ(1.13, 0.623,−0.157)] are shown in figure 12.17 by the thin grey curves.

Several observations of the two sample Pearson Type III and two sample log-Pearson
Type III curves are made. PE3pm is truncated at about F < 0.2 (horizontal axis), which
reflects negative quantiles. In general, the focus of distributional analysis is on the right
or high magnitude tail (F ≥ 0.5) of the distribution. For the remainder of this discussion,
therefore, indifference to the left tail is made, and the presence of negative quantiles is
ignored.

From the figure, an immediately apparent difference between the two Pearson Type III
and two log-Pearson Type III for the sample is that the log-Pearson Type III curves are
straighter (less skewed) in the logarithmic axis than the Pearson Type III curves. As a result,
the quantiles for F > 0.90 relative to the parent are overestimated by the log-Pearson
Type IIIas judged by the thin lines plotting above the thick grey line of the parent. The
overestimation is considerable.Whether or not this observation is a vagary of sampling can
be explored by simulation. Natural questions are: (1) on average, does log-Pearson Type
III overestimate (to clarify, the use of an log-Pearson Type III distribution) for F > 0.90

10 This figure was generated by the author’s TKG2 graphics package and annotated in Adobe
Illustrator CS3.
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as hinted at by the figure or (2) does log-Pearson Type III underestimate for F > 0.90?
These questions and several others are explored in the next section.
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Figure 12.17. Comparison of product moment and L-moment fits of Pearson Type III and log Pear-
son Type III to 20 samples drawn from a Pearson Type III parent

12.8.4 Thought Experiment—To Product Moment or L-moment and To
Transform Data?

For a thought experiment, suppose that only the n = 20 sample of figure 12.17 for this
rainfall phenomenawas available; the actual parent distribution is unknown. In particular,
it is unknown whether the parent is in log10 space or not. In practical circumstances,
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Figure 12.18. Comparison of product moment and L-moment estimation of the 0.99 quantile of
Pearson Type III and log-Pearson Type III parents using both nontransformed and log10 trans-
formed data for a sample size of 20. Arrows lead from the population value to the means of
10,000 sample statistics.

should the fitted log-Pearson Type III or Pearson Type III be preferred and how should
either be estimated?

The γ̂ value of the sample is greater than about 1.5, which from the left graph in fig-
ure 12.14 suggests that skew is large enough that log10 transformationmight bewarranted
to increase the effectiveness of the product moments. The left graph in figure 12.14 shows
that the sample product moments are expected to underestimate γ and in fact γ̂ < γ̂λ.
The right graph in the figure shows that the L-moment estimate of γ is unbiased. Based
on visual or graphical comparison of the data points to the fitted distributions shown in
figure 12.17, one might conclude that the log-Pearson Type III is appropriate; however,
much caution is advised in judging fit for such a small sample in this way.

When analyzing a sample such as in figure 12.17, the analyst has a serious quandary.
Which of the four fitted curves to the n = 20 data given application of a Pearson Type III
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family is most appropriate? (For this thought experiment, the fact that the actual parent
is Pearson Type III is not known.) The quandary is that four options exist, and collectively,
these options are termed the “four methods” and are:

1. Compute sample product moments and fit the Pearson Type III, which is abbreviated
as PE3pm;

2. Compute sample L-moments and fit the Pearson Type III, which is abbreviated as
PE3λ;

3. Perform log10 transform, compute sample product moments, and fit the log-Pearson
Type III, which is abbreviated as LP3pm; and

4. Perform log10 transform, compute sample L-moments, and fit the log-Pearson Type
III, which is abbreviated as LP3λ.

ThePE3′ parent is in real space. Aswill become evident, a somewhat equivalent version
of PE3′ as a log-Pearson Type III parent (LP3′) will be useful. A giant sample size of
n = 1,000,000 was drawn from PE3′, the L-moments of log10 transformed values were
computed, and the log-Pearson Type III parameters estimated. The estimated LP3′ is
LP3′(1.0929, 0.3021, 0.01935).

ThePE3′ andLP3′ distributions are used in a simulation experiment involving selected
quantilesX(F ) for F = (0.5, 0.6, 0.7, 0.8, 0.9, 0.96, 0.98, 0.99). The results of the experi-
ment are shown in figure 12.18. Similar to earlier figures, the arrows lead from the popu-
lation value to the sample values for each quantile, more precisely for figure 12.18 alone,
because of limitations of the interactive-graphical editing software,11 the arrow-head cen-
ters are at the coordinates of the sample values. (This rendering is in contrast to the arrow
heads in figs. 12.13–12.16.)

For each of the selected F values, the eight true values PE3′(F ) and LP3′(F ) were
computed. These values are identified in figure 12.18 at the nexus of the arrow clusters
and the corresponding F value label. The horizontal axis represents the PE3′(F ) values,
and the vertical axis represents the LP3′(F ) values.

The simulation experiment was conducted as follows. In a process that was repeated
10,000 times for each F value, samples n = 20 were drawn from PE3′(24.5, 31.2, 2.75)

and separately from LP3′(1.0929, 0.3021, 0.01935). For each sample, µ̂pm, σ̂pm, and γ̂pm
were computed and µ̂log

pm, σ̂log
pm, and γ̂logpm of a log10 transformation of the sample. Using

11 Adobe Illustrator CS3, frustrating limitations of the arrow rendering features.
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these values, the quantiles of the fitted PE3pm and LP3pm were computed. Finally, the
means of the 10,000 quantiles of fitted PE3pm and LP3pm for each F were computed.
These sixteen mean values provide the coordinates at the center of the magenta and black
arrow heads in figure 12.18.

Similarly, for the same n = 20 samples, the L-moments were computed and converted
to Pearson Type III parameters (µ̂λ, σ̂λ, γ̂λ) and log-Pearson Type III parameters (µ̂log

λ ,
σ̂log
λ , γ̂logλ ). Again, using these values, the quantiles of the fitted PE3λ and LP3λ were

computed. Finally, the means of the 10,000 quantiles of fitted PE3λ and LP3λ for each F
were computed. These 16 mean values provide the coordinates at the center of the cyan
and green arrow heads infigure 12.18.

The lengths of the arrows in the figure represent bias. The choice of log10 for both axis
scales is intentional so relative bias for each F is represented. Arrows oriented toward
the right indicate that overestimation of PE3 occurs, and arrows oriented toward the top
indicate that overestimation of LP3 occurs. The cyan arrows (estimation by L-moments
without log10 transformation of the data) are almost all systematically shorter than the oth-
ers. This indicates that use of a Pearson Type III fitted by L-moments is preferred whether
the parent is Pearson Type III or log-Pearson Type III. The magenta arrows (estimation
by PE3pm) are generally the longest, which indicates the poorest performance of the four
methods.

The description of the LP3pm and LP3λ methods is more complex. Each method appar-
ently outperforms PE3pm for F ≤ 0.90 but appears to dramatically underperform for
F > 0.90. The LP3pm and LP3λ perform similarly and for a given F are oriented in the
same direction (unlike PE3pm and PE3λ). As F increases above F ≥ 0.96, LP3λ appears
to dramatically underperform and, in particular, underperforms (by overestimation) for
PE3′. This implies that use of L-moments on log10 transformed data, whether the true
parent form was PE3′or LP3′, provides little and perhaps even a harmful parameter esti-
mation benefit for large F .

12.8.5 Some Conclusions

If a parent distribution is Pearson Type III, then the sample L-moments appear to system-
atically outperform the sample productmoments for parameter estimation. Specifically, as
measured by bias, L-moments outperform the product moments as variability and skew-
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ness of the Pearson Type III parent becomes large; the product moments underestimate
both variability and skewness. Under conditions of near zero skewness, sample product
moments and L-moments have similar performance. The use of any moment statistic for
small samples requires caution. The L-moments overestimate the variability and skew-
ness for the Pearson Type III for small samples, but by a sample size of 40, the sample
L-moments can be considered reasonably unbiased.

Logarithmic transformation of the data decreases skewness and is a useful and impor-
tant tool for increasing the performance of product moments. The comparison of Pearson
Type III and log-Pearson Type III parameter estimation for a hypothetical right-tail heavy
sample of size 20 suggests that a PE3λ performs better whether the actual parent distri-
bution is either Pearson Type III or log-Pearson Type III. Finally, the author concludes that
PE3λ estimation generally should be preferred over PE3pm estimation in applied circum-
stances. This conclusion is complementary to that of Wallis (1988, p. 311) who concludes
at a minimum that LP3λ should be preferred over LP3pm.

12.9 L-comoments—Multivariate Extensions of L-moments

This dissertation is focused on univariate distributional analysis using L-moments. Fortu-
nately, about 17 years after the ground breakingwork of Hosking (1990), Serfling and Xiao
(2007) established a coherent extension of L-moments into multivariate space. It seems
therefore fitting to end this dissertation with an introduction to L-comoments and show
some original contributions of the author to L-moment theory that involves L-comoments
and copulas. In particular, this section summarizes multivariate L-moments and support
provided by the lmomco package.

Serfling and Xiao (2007) introducedmultivariate L-moments or L-comoments and pro-
vide considerable discussion of their properties and computation. In brief, L-comoments
have a representation in terms of concomitants. Serfling and Xiao (2007, p. 1772) con-
sider, through an adapted quotation, “a sample {(X [1]

i , X
[2]
i ), 1 ≤ i ≤ n} from [bivariate

distribution] G(x[1], x[2]) with marginals F1(x) and F2(x).” For the ascending ordered
values of X [2], Serfling and Xiao refer to the “element of {X [1]

i , · · · , X
[1]
n } that is paired

with X [2]
j:n the concomitant X [12]

j:n of X [2]
j:n.” The authors Serfling and Xiao show that the

rth L-comoment has a representation as the expected value of a concomitant in precisely
“the same way as L-moments are defined in terms of expected values of order statistics”

386



Texas Tech University,William H. Asquith, May 2011

as shown in eq. (3.4), and the representation is

λ[12]r =
1

r

r−1∑
j=0

(−1)j
(
r − 1

j

)
E[X

[12]
r−j:n] (12.24)

Serfling and Xiao, using (12.24), subsequently provide an unbiased sample estimator

λ̂[12]r =
1

n

n∑
j=1

w
(r)
j:nX

[12]
j:n (12.25)

where the weights w(r)
j:n are computed as in eq. (6.50) and λ̂

[12]
r is defined as the rth

L-comoment of X [1] with respect to X [2]. Likewise the respective estimator for the rth
L-comoment ofX [2] with respect toX [1] is

λ̂[21]r =
1

n

n∑
j=1

w
(r)
j:nX

[21]
j:n (12.26)

An important characteristic of L-comoments is that they need not be symmetric (and
usually are not), that is, λ̂[12]r 6= λ̂

[21]
r or the expected co-movements of X [1] with respect

to X [2] are not necessarily the same as the expected co-movements of X [2] with respect
toX [1]. Like Serfling and Xiao, the author embraces the asymmetry as a feature of these
statistics. The asymmetry is counter to the symmetry defined into conventionalmeasures
of association (Nelson, 2006, p. 169), such as the measures of concordance statistics of
Kendall’s Tau and Spearman’s Rho (see help(cor)).

The L-comoment ratios τ [12]r = λ
[12]
r /λ

[1]
2 or τ [21]r = λ

[21]
r /λ

[2]
2 for r ≥ 2 are analogs to τr

and have sample counterparts τ̂ [12]r = λ̂
[12]
r /λ̂

[1]
2 . The ratios are interpreted as follows: for

r = 2, the notation τ [12]2 is to be read “the L-correlation ofX [1] with respect toX [2],” and
for r = 3, τ [21]3 is to be read “the L-coskew ofX [2] with respect toX [1].” The L-comoment
ratios of r = 4 are known as L-cokurtosis.

Using R Using R

The L-comoments are readily demonstrated with several functions of the lmomco pack-
age. Starting in example 12–29 , a bivariate random sample of n = 500 for a standard
Normal distributed X with Y being computed as shown along with a standard Normal
error term. The bivariate sample is stored in the data frame D. The example continues by
plotting the simulated data in figure 12.19 along with the two rug plots, which are created
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by the rug() function in a semi-transparent red color. The rug plots show the marginal
distribution of each variable or “drape” the values onto the respective axis of the variable.

12–29
X <- rnorm(500); Y <- X^2 + rnorm(500)
D <- data.frame(X=X, Y=Y)
#pdf("lcomomentA.pdf", version="1.4")
plot(D)
rug(D$X, side=1, col=rgb(1,0,0,0.4))
rug(D$Y, side=2, col=rgb(1,0,0,0.4))
#dev.off()

The plot in figure 12.19 shows that the bivariate sample has a somewhat complex depen-
dency structure between X and Y. The horizontal-axis rug plot shows symmetrically dis-
tributed values with tapering tails and is obviously standard Normal. The distribution
of Y that is shown on the vertical-axis rug plot shows that the distribution has positive
skewness. These differences in symmetry are quantified in example 12–32 .

3 2 1 0 1 2 3

0
5

10

X

Y

Figure 12.19. Simulated bivariate data for computation of L-comoments from example 12–29

Example 12–30 continues the discussion by computing the first L-comoment using
the Lcomoment.matrix() function for k=1. The results are shown. In particular, the
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content of the $matrix attribute holds the L-comoment matrix of order 1. This matrix
contains each arithmetic mean as the subsequent call to the mean() function confirms at
the end of the example.

12–30
Lcomoment.matrix(D,k=1)
$type
[1] "Lcomoment.matrix"
$order
[1] 1
$matrix

[,1] [,2]
[1,] 0.07685957 NA
[2,] NA 1.122278

# Now finally, for comparison, compute means
mean(D)

X Y
0.07685957 1.12227798

J

Continuing with the bivariate random sample in variable D from example 12–29 , the
L-comoment-matrix of order 2 is computed in example 12–31 and set into variable L2.
Using the second order matrix, the L-correlation between the two variables is computed
by the Lcomoment.correlation() function, and the results are shown.

12–31
L2 <- Lcomoment.matrix(D, k=2) # order 2 matrix
Lcomoment.correlation(L2) # compute L-correlation
$type
[1] "Lcomoment.coefficients"
$order
[1] 2
$matrix

[,1] [,2]
[1,] 1.0000000 0.1173538
[2,] 0.1222056 1.0000000

# Just for comparison, compute Spearman’s Rho
cor(D$X,D$Y, method="spearman")
[1] 0.1153683

The results show that the respective L-correlations are τ [12]2 = 0.117 and τ [21]2 = 0.122.
These are small values, so the association between the variables (note the lack of numerical
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equality in the statistics) isweak. This conclusion is confirmed using the cor() function to
compute a Spearman’s Rho of about 0.115 as shown in example 12–31 . Manymeasures of
association, such as Kendall’s Tau and Spearman’s Rho, are symmetric statistics (Nelson,
2006, p. 169), that is, the equality cor(X,Y)=cor(Y,X) exists. This is not true of the
L-comoments. J

Continuing the presentation and using the bivariate random sample in variable D from
example 12–29 , the L-comoment-matrix of order 3 is computed in example 12–32 and
set into variable L3. For subsequent comparison, the familiar L-moments of variable X
(contained in D$X) are computed by the lmoms() function and set into variable LMRx.
The third L-moment is λ3 = 0.0086 as shown in example 12–32 .

12–32
L3 <- Lcomoment.matrix(D, k=3)
LMRx <- lmoms(D$X)
cat(c("# OUTPUT: Lcomoment M[1,1] =",

round(L3$matrix[1,1], digits=5), "\n",
"# and 3rd L-moment by lmoms=",

round(LMRx$lambdas[3], digits=5), "\n"))
# OUTPUT: Lcomoment M[1,1] = 0.0086
# and 3rd L-moment by lmoms= 0.0086

Lcomoment.coefficients(L3,L2) # compute L-coskew
$type
[1] "Lcomoment.coefficients"
$order
[1] 3
$matrix

[,1] [,2]
[1,] 0.01499681 0.06300544
[2,] 0.64066883 0.23312682

round(lmoms(D$X)$ratios, digits=5)
[1] NA 7.46231 0.01500 0.15098 -0.01338

round(lmoms(D$Y)$ratios, digits=5)
[1] NA 0.85248 0.23313 0.22161 0.09630

Example 12–32 continues by computing the L-coskew between the two variables using
the Lcomoment.coefficients() function. This function requires the L-comoment
matrix of order 2 (L2) from example 12–31 as the second argument. The results show
that τ [12]3 = 0.06 and τ [21]3 = 0.64.
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The two sample L-coskews attain different values. Can the differences (0.06 � 0.64)
be interpreted? The τ [12]3 = 0.06 or L-coskew of X with respect to Y is near zero—in other
words, symmetry of sorts exists in the co-movement of Xwith respect to Y. J

Further consideration of L-coskew is needed. In example 12–33 , a trivariate random
sample is created and set into the Trivar variable. Readers are alerted that the primary
extension from the previous examples is the negation of the X^2 term between Y and Z.
The L-coskew matrix then is computed and shown.

12–33
X <- rnorm(500); Y <- X^2 + rnorm(500); Z <- -X^2 + rnorm(500)
Trivar <- data.frame(X=X, Y=Y, Z=Z) # Trivariate random sample
L2 <- Lcomoment.matrix(Trivar, k=2) # 2nd L-comoment matrix
L3 <- Lcomoment.matrix(Trivar, k=3) # 3rd L-comoment matrix
Lcomoment.coefficients(L3,L2) # compute L-coskew
$type
[1] "Lcomoment.coefficients"
$order
[1] 3
$matrix

[,1] [,2] [,3]
[1,] -0.006193864 -0.006558694 -0.06360398
[2,] 0.598668642 0.206718534 0.32379560
[3,] -0.627044762 -0.342615780 -0.19173351

In the output, τ [21]3 = 0.60 (differs fromexample 12–32 because a new sample is created)
and τ [31]3 = −0.63. Readers are asked to notice that these two L-coskew values are of
similar magnitude as anticipated but differ in sign because of the negation of Z relative
to Y.

Example 12–33 shows that the L-comoments are readily computed for>2-dimensional
data using the Lcomoment.coefficients() function. Because bivariate data are so
common, the lmomco package provides the lcomoms2() function (the 2 in the function
name reflects “2 dimensional”) to provide potentially more accessible L-comoment data
structures. J

Some setup of newmathematics is needed before the lcomoms2() function is used for
an example of multivariate distributional analysis.

Nelson (2006) provides a comprehensive introduction to copulas, which are specialmul-
tivariate distributions having marginal distributions that are Uniform. The copulaC(u, v)

(bivariate) is the expression of the joint nonexceedance probability of random variable U
and random variable V . The quantities u and v are the respective nonexceedance proba-
bilities.
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Solely for the purpose of illustration, the Marshall-Olkin copula is used. The copula is
set by parameters α and β, and the copula possesses some interesting L-comoments. The
Marshall-Olkin copula is

C(u, v) = min(vu1−α, uv1−β) (12.27)

and this bivariate copula is created in example 12–34 by the MOcop() function. The
function receives the two probabilities u and v and a vector of parameters in the para
argument.

12–34
"MOcop" <-
function(u,v, para=NULL) {

alpha <- para[1]
beta <- para[2]
return(min(v*u^(1-alpha), u*v^(1-beta)))

}

The method of conditional simulation (Nelson, 2006, pp. 40–42) can be used to create
random pairs u and v as jointly distributed by a copula. The method requires a function to
compute the inverse of the derivative of a copula. In example 12–35 , the derCOPinv()
function is created to numerically compute the inverse of the derivative of a copula for a
given u.

12–35
"derCOPinv" <-
function(cop=NULL, u, t, delu=.Machine$double.eps^0.5, para=NULL)
{

"func" <-
function(v, u=NULL, LHS=NULL, cop=NULL,

delu=delu, para=para) {
dc <- (cop(u+delu,v, para=para) -

cop(u, v, para=para))/delu
return(LHS - dc)

}
try(rt <- uniroot(func, interval=c(0,1), u=u, LHS=t,

cop=cop, delu=delu, para=para))
ifelse(length(rt$root) != 0, return(rt$root), return(NA))

}

Conditional simulation is actually implemented by the simulateCopula() function,
which is created in example 12–36 . The number of simulations is specified by the n argu-
ment. The copula function to simulate and its parameters are set by the cop and para

arguments, respectively.
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12–36
"simulateCopula" <-
function(n, cop=NULL, para=NULL) {

U <- V <- vector(mode="numeric")
for(i in 1:n) {

u <- runif(1); t <- runif(1) # two uniformly distributed vars
v <- derCOPinv(cop=cop, u, t, para=para)
if(is.na(v)) {

warning("could not uniroot in derCOPinv, skipping sample")
warning(para); next

}
U[i] <- u; V[i] <- v

}
return(data.frame(U=U, V=V))

}

Finally, in example 12–37 , the Marshall-Olkin copula of eq. (12.27) is simulated for
n = 1,000, and the results are shown in figure 12.20. The figure shows a complex and
asymmetrically dependent joint distribution that also has both continuous and singular
components. By inspection of the plot, the data have positive association, and therefore,
the data should have positive L-correlation. The asymmetry of the plot suggests that the
data should have non-zero L-coskew.

12–37
simA <- simulateCopula(1000, cop=MOcop, para=c(0.4,0.9))
#pdf("mocopA.pdf")
plot(simA$U, simA$V,

xlab="RANDOM VARIABLE U NONEXCEEDANCE PROBABILITY",
ylab="RANDOM VARIABLE V NONEXCEEDANCE PROBABILITY")

#dev.off()

lcomoms2(simA, nmom=4)
$L1

[,1] [,2]
[1,] 0.4821094 NA
[2,] NA 0.4898829

$L2
[,1] [,2]

[1,] 0.16851096 0.08525086
[2,] 0.08598543 0.16825552

$T2
[,1] [,2]

[1,] 1.0000000 0.5059069
[2,] 0.5110408 1.0000000
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$T3
[,1] [,2]

[1,] 0.02575336 0.19724727
[2,] -0.02013093 0.01465324

$T4
[,1] [,2]

[1,] -0.004583203 0.014791149
[2,] 0.051722854 -0.001361602
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Figure 12.20. Simulated bivariate data from Marshall-Olkin copula α = 0.4 and β = 0.9 (open
circles) from example 12–37

Example 12–37 continues after the plotting operations by computing the first four
L-comoments using the lcomoms2() function. The L-moments (the matrix diagonals)
and L-comoments (the off diagonals) for U and V for the low moment orders (r = 1, 2)
are the two matrices
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λ̂
[1,2]
1 =

[
0.482 --

-- 0.490

]
≡ means (12.28)

λ̂
[1↔2]
2 =

[
0.169 0.085

0.086 0.168

]
≡ L-scales and L-coscales (12.29)

and the τ2 equivalent matrix is

τ̂
[1↔2]
2 =

[
1 0.506

0.511 1

]
≡ L-correlations (12.30)

and for the higher moment orders (r = 3, 4), the L-moments and L-comoments are the
two matrices

τ̂
[1↔2]
3 =

[
0.026 0.197

−0.020 0.015

]
≡ L-skews and L-coskews (12.31)

τ̂
[1↔2]
4 =

[
−0.005 0.015

0.052 −0.001

]
≡ L-kurtosis’s and L-cokurtosis (12.32)

To summarize the part of the notation, the quantity [1↔2] implies the row-major order of
matrix entries of {[1], [12], [21], [2]}. J

The preceding example involves the Marshall-Olkin copula with α = 0.4 and β = 0.9

and shows that the L-comoments are capable of measuring asymetrical skew (L-coskew).
One of the L-coskews in τ̂ [2↔1]

3 is near zero (τ̂ [21]3 = −0.020), whereas the other τ̂ [12]3 =

0.20. Now, the parameters of the Marshall-Olkin copula are reversed in example 12–38 ,
and an n = 1,000 simulation is performed. The results are set into variable simB. Finally,
the simulated copula from example 12–37 again is plotted in figure 12.21 with the new
simulated copula superimposed.

It is seen in figure 12.21 that the two copulas are stochastically-reflected images of each
other. Therefore, there is the expectation that the L-coskew values will have different signs
than those seen in example 12–37 . In fact, example 12–38 shows this to be the case.

12–38
simB <- simulateCopula(1000, cop=MOcop, para=c(0.9,0.4))
#pdf("mocopB.pdf")
plot(simA$U, simA$V,

xlab="RANDOM VARIABLE U NONEXCEEDANCE PROBABILITY",
ylab="RANDOM VARIABLE V NONEXCEEDANCE PROBABILITY")
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points(simB$U, simB$V, cex=0.75, pch=16) # filled circles
#dev.off()
lcomoms2(simB, nmom=4)

$L1
[,1] [,2]

[1,] 0.5056422 NA
[2,] NA 0.503327

$L2
[,1] [,2]

[1,] 0.16598985 0.07705152
[2,] 0.07686484 0.16414484

$T2
[,1] [,2]

[1,] 1.0000000 0.4641942
[2,] 0.4682745 1.0000000

$T3
[,1] [,2]

[1,] -0.01561889 -0.080550864
[2,] 0.19063895 0.001365165

$T4
[,1] [,2]

[1,] 0.007412991 0.05057821
[2,] 0.032911336 0.01198380

Example 12–38 continues by using the lcomoms2() function to compute the first four
L-comoments. In particular, the τ̂ [1↔2]

3 for U and V are

τ̂
[1↔2]
3 =

−0.016 −0.081︸ ︷︷ ︸︷ ︸︸ ︷
0.191 0.001

 ≡ Marshall-Olkin copula (α=0.9, β=0.4) (12.33)

τ̂
[1↔2]
3 =

 0.026
︷ ︸︸ ︷
0.197

−0.020︸ ︷︷ ︸ 0.015

 ≡ Marshall-Olkin copula (α=0.4, β=0.9) (12.34)

It is especially informative to compare the L-coskew values according to the
︷ ︸︸ ︷
overbrace

and underbrace︸ ︷︷ ︸. The paired values are effectively the same, but differ in position within

the τ̂ [1↔2]
3 L-comoment matrix.
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Figure 12.21. Simulated bivariate data from Marshall-Olkin copulas with α = 0.4 and β = 0.9
(open circles) and α = 0.9 and β = 0.4 (filled circles) from example 12–38

To further examine this observation, the two Marshall-Oklin copulas have the same
parameters that only are exchanged with each other. Either copula has the same Spear-
man’s Rho because Rho is defined for the Marshall-Olkin copula as

Spearman’s Rho ρ =
αβ

α + β − αβ
(12.35)

This formula obviously results in the same numerical value for exchanged parameter
values. Yet figure 12.21 clearly shows that the associative structure of the two bivariate dis-
tributions are distinct. The L-comoments quantify the asymmetry in the bivariate relation,
whereas Spearman’s Rho is incapable of capturing such asymmetry.

In conclusion, L-comoments have obvious applications in evaluation of multivariate
dependency structure and for parameter estimation for multivariate distributions, includ-
ing parameter estimation for copulas. However, further elucidation and pursuit of a
method of L-comoments for parameter estimation of copulas is beyond the scope of this
dissertation. J
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12.10 Summary

This chapter presents more advanced demonstrations of L-moment-based distributional
analysis than seen in the other chapters. The 38 examples provided readily followed and
extendable examples of right-tail and left-tail censoring distributional analysis. The former
is common in survival and lifetime analysis, whereas, the later is common in hydrologic
or environmental data involving detection limits. Subsequently, the censoring discussion
expands to include right-tail censoring by indicator variable and left-tail censoring by indi-
cator variable through variable flipping. Following the censoring material, conditional
probability adjustment for the presence of zero values by blipped-distribution model-
ing is shown. Although zero values are likely the most common application, the exam-
ples should be readily extendable to other lower thresholds. An extended discussion and
demonstration of quantile uncertainty involving simulated sampling error (error related
to sample size) and model-selection error (error related to choice of distribution) is pro-
vided. An extensive comparison of the performance of product moments and L-moments
for parameter estimation for a wide range of skewness within Pearson Type III and log-
Pearson Type III distributions is made. The results show that L-moments can significantly
outperform product moments in terms of bias and that L-moments are preferred whether
the parent distribution is Pearson Type III or log-Pearson Type III. Finally, this chapter and
this dissertation ends with an introduction to multivariate L-moments or L-comoments,
their sample computation, and applications that they might have in the context of applied
statistical analysis using copulas.
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Epilogue

This dissertation concerns distributional analysis with L-moment statistics using R. The
breadth of the text is ambitious, complex, and encompasses the background, mathemat-
ics, algorithms, techniques, interpretations, references, and indexing needed for thorough
documentation of L-moments and related statistics for the R environment for statisti-
cal computing. These elements are needed by beginners and many are useful to experts
involved in distributional analysis of Normal to non-Normal, symmetrical to asymmetri-
cal, and thin to heavy-tailed distributions. A wide range of disciplines are anticipated to
be, or are already, impacted bymaterial in this dissertation, the lmomco package, and other
L-moment-related packages for R. Such judgement is made because statistical analysis of
distributions touches investigations and research in all scientific, engineering, medical,
and financial endeavors. It therefore is fitting to end this dissertation with a summary of
the impact of the lmomco package (Asquith, 2011) and commentary on “where to go from
here.”

Impact of the lmomco Package

Close to the date of publication of this dissertation, there are several recognizable cita-
tions of the lmomco package that are found through Internet searches:

• General Statistical Programming—Cohen and Cohen (2008) provide a substantial
book on statistical programming usingR that references the lmomco package, although a
traditional citation (end of chapter or end of text) to Asquith (2011) seems to be missing.
The lmomco package is suggested for initial parameter guessing of a distribution for
handoff into the numerical methods of the method of maximum likelihood.

• Agriculture—Liou and others (2007) cite the lmomco package; although the authors
identify the author of lmomco as “William,H.A.” The article appears in aChinese agricul-
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tural engineering journal; however, the abstract (only part in English) suggests that the
authors’ purpose (seemingly more general than agriculture engineering) is to evaluate
the power of a goodness-of-fit test concerning L-moment ratio diagrams to established
goodness-of-fit tests (Komogorov-Smirnov and Chi-squared).

• Biology—The asbio package (Aho, 2010) in R reverse suggests the lmomco package.

• Bioinformatics—The L-moment ratio diagram functions of lmomco are used to produce
figures in Thomas and others (2010, p. 6); although the authors identify the package as
“lmomc.”

• Finance—The lmomco and Lmoments (Karvanen, 2009) packages are used by Kerstens
and others (2010) for computation of L-moments.

• Geophysics—Thompson and others (2007, p. 3) use lmomco to compute at least the
L-moments. Although distributions are used and in particular the Gumbel is used, the
authors do not seem to identify the algorithmic source for their distributional support.

• Hydrology—Many hydrologic articles and reports on water resources with emphasis
towards regionalization of floods or streamflow exist for which reference to lmomco is
made (Cobo and Verbist, 2010; Neykov and others, 2007; Rustomji, 2009, 2010; Rustomji
and others, 2009; Roudier and Mahe, 2009; vanNooijen and Kolechkina, 2010a,b). In
particular, Rustomji and others (2009) credit lmomco in their Acknowledgements, “Sta-
tistical analyses were undertaken using the ’lmomco’ package.”

• Meteorology—Morgan and others (2011) use lmomco support of the Wakeby distribu-
tion in research into the distributions of offshore wind speed.

The author personally thanks these investigators and researchers for crediting the
lmomco package.

Extensions of L-moments and the lmomco Package

It is natural for this epilogue to consider or suggest extensions to L-moment theory, in
general, and the lmomco package, in particular. Extension of the L-comoments into left-
and right-tail censored multivariate data would be fascinating. The author has dabbled in
parameter estimation of copulas (bivariate versions) using the L-comoments and promise
is shown for the particular problem of fitting copulas that model particularly asymmetric
multivariate probabilities. Extension of the L-moments to simultaneous left- and right-
censoring by indicator variable might be useful in some disciplines.
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The lmomco package is an open-ended library available to the global community. The
author would like to see audits and enhancements to the lmomco user’s manual (Asquith,
2011) to bring the manual, as needed, into concordance with this dissertation. Invitation
is extended to readers to communicate with the author suggestions and contributions in
pursuit of continual enhancement and extension of both documents (or their derivatives).
Specific enhancements to lmomco are now identified.

The author would like additional distributions, such as the L-moments of the asym-
metric exponential power distribution by Delicado and Goria (2008), added to lmomco as
well as the distributions of Section 8.3. Another example is the truncated exponential dis-
tribution that is considered by Vogel and others (2008) in the application of L-moments
for distributional analysis and goodness-of-fit of species extinction time based on sight-
ings. Other distributions most certainly exist in which the L-moments (or equivalently the
probability-weighted moments) have been or will be derived in the future. It would be
exciting to have these added to lmomco.

The lmomco package would be substantially enhanced by the inclusion of the A- and
B-type probability-weighted moments and the A’- and B’-type probability-weighted
moments for more distributions than just the Reverse Gumbel as currently (May 2011)
implemented. Hosking (1995) provides the A- for the Weibull distribution and B- for the
Generalized Pareto and Gamma distributions. These three apparently are not yet imple-
mented in any R package.

As of May 2011, the lmomco package has a heavily procedural language structure
with hints of object-oriented design. Perhaps one day, a fully object-oriented version will
emerge and new features and flexibility will result. An object-oriented code base might
facilitate the adaption of quantile function algebra and parameter estimation into the pack-
age. The incorporation of quantile function algebra would facilitate the construction of
even more complex distributions than those shown in this dissertation.
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201–203, 205, 209, 214, 215, 226, 228, 230,
231, 243, 249, 254, 256, 257, 267, 279, 280,
286–297, 330, 332

probability mass function 106
probability-weighted moment

sample
plotting-position estimator 105

probability-weighted moments xxii, xxiii, 8,
9, 12, 13, 62, 63, 78, 79, 98, 99, 99, 100–105,
108–115, 121, 123, 127, 142, 157–159, 164,
170, 191, 197, 239, 267, 337–346, 374, 401

A’-type
sample 345, 345, 346
theoretical 344, 345

A-type 401
sample 341, 341, 342
theoretical 339, 340

B’-type

sample 345, 346
theoretical 344, 345

B-type 191, 239, 401
sample 341, 341, 342, 346
theoretical 339, 340

method of 109, 109, 111, 135
partial 338
prior 105, 105
sample 100, 101, 103, 105–107, 109, 111, 125,

127, 343
plotting-position estimator 101, 103, 104,
107, 111, 125

unbiased estimator 103–105, 111
self-determined 100
theoretical 101

product moment ratios
coefficient of variation see coefficient of

variation
kurtosis see kurtosis
skew see skew

product moments xxii, 9, 10, 12, 14, 33, 46–48,
60, 67, 78, 79, 79, 81, 83, 84, 86, 87, 91, 92,
94, 97–102, 109–112, 114, 120, 133–135,
138, 145, 146, 148, 152, 156, 159, 173, 175,
179, 180, 183, 206, 231, 234, 235, 242, 243,
256, 257, 267, 337, 338, 374–378, 383, 385,
386, 398

as statistics of moment arms 134
C-moments 114
coefficient of variation see coefficient of

variation
estimators 86
kurtosis see kurtosis
L-moments preferable to 113
method of 2, 47, 48, 49, 57, 58, 60, 135, 222,

264, 374, 375
moment ratio diagram 298, 298
noncentral 101
ratios 84
sample 47, 60, 84, 86, 87, 97, 98, 102, 145,

157, 376, 378, 381, 383–385
sample size boundedness of 78, 87, 90, 92,

93, 150, 157
coefficient of variation 90, 91, 98
skew 90, 93, 94, 96

skew see skew
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standard deviation see standard deviation
theoretical 83
variance see variance

Pythagorean
distrance 197

Q

quantile 29, 32, 48, 50–52, 55, 68, 69, 94, 167,
178, 182, 184, 189, 219, 226, 234, 239, 249,
256, 257, 263, 264, 270, 279, 291, 296, 311,
321, 340, 349, 353–358, 360, 361, 367–369,
371, 381, 384, 385

extreme-tail estimation 324
mixtures 309
uncertainty 338, 361, 398, see model-

selection error, see sampling, error
model-selection error 338, 361, 369, 371,
372, 398

sampling error 338, 361, 362, 365, 367, 398
quantile distribution function see quantile

function
quantile function 24, 29, 29, 30, 32, 33, 35,

38, 39, 45, 48, 55, 59, 63, 65, 67, 94, 99,
101, 117–119, 121–123, 126, 136, 139–141,
160–162, 165, 170, 173, 174, 178, 181, 183,
188, 190, 214, 215, 224, 225, 227, 235, 254,
256–258, 267, 271, 274, 288–291, 296, 329,
330, 339–341, 344, 345, 355, 358, 360

algebra of 33, 401
as inverse distribution function 30
by inverse transform method 31
by recursion 32
derivatives of 118, 119
sample 30

quantile-quantile plot 256
quartile 22, 44, 46

interquartile range see range, interquartile
lower 44, 46, 358
upper 44, 46, 163

R

R environment ii, iii, xxii–xxv, 2, 3, 3, 4–18,
22–25, 27, 30–33, 36, 37, 43, 44, 46, 49, 52,
57, 61, 64, 68, 70, 73, 76, 78, 79, 81, 85, 87,
90, 91, 98, 99, 105, 110, 112, 114, 125, 127,

137, 142, 158, 161–164, 166, 169, 171, 172,
175–179, 182, 183, 195–197, 205, 208, 214,
216, 230, 247, 248, 259, 272, 298, 309, 314,
318, 337, 338, 399–401, 429

as freedom 3, 4, 30, 183
packages
GLDEX 10, 272–275, 434
Lmoments xxv, 10–13, 15, 115, 116, 127,
143, 272, 400, 434

NADA 338, 353, 356–358
POT 10, 11
RFA 10, 11
asbio 400
beanplot 318
extRemes 10
lattice 198
lmomRFA 10, 11
lmomco ii, iii, xxiv, xxv, 7, 10–13, 15, 18, 29,
53, 55, 57, 69–71, 74, 75, 87, 90, 94, 98, 100–
102, 107–111, 114–116, 123, 124, 127–129,
142, 143, 148, 158, 159, 161–172, 176–179,
182–184, 186, 187, 191–193, 195, 197, 204,
207–211, 214–220, 224, 230, 238, 240, 247,
248, 251, 256, 258–260, 271, 273–275, 279,
281, 291, 295, 296, 303, 305, 306, 310, 311,
313–316, 323, 324, 337, 339, 342, 344, 353,
356, 363, 371, 386, 387, 391, 399–401, 422,
431

lmom 10–13, 15, 115, 119, 127, 143, 159,
160, 164, 183, 214, 256, 295, 434

vioplot 318
RData format 18
workspace 5, 18, 20

rainfall xxiii, 16, 48, 181, 186, 235, 302, 315,
316, 324, 358, 376, 378, 382

annual maximum 223, 224, 314–317, 319,
321–323, 336

depth 381
depth-duration frequency of 315
drought 235
extreme 113
hourly 378
inception of 201
minimum interevent time 378
monitoring 315
monthly 378
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raindrop size 179
recording bias 319
storm statistics 378

random sample 2, 23, 41, 53, 61, 84, 130, 134,
135, 152, 188, 193, 279, 280, 339, 344, 359,
381, 387, 389–391

random variable 9, 23–26, 28, 30, 36, 37, 51,
59–61, 64–66, 77–79, 83, 94, 101, 105, 117,
120, 137, 139, 174, 204, 209, 245, 310, 338,
339, 343, 344, 348, 391

bivariate 386–392, 397, 400
continuous 23, 59
discrete 23
multivariate 9, 156, 338, 386, 391, 397
trivariate 391
univariate 1, 2, 8, 9, 11, 12, 15, 23, 113, 156,

158
range 30, 38, 47, 47, 50, 93, 374

interquartile 21, 46, 46, 47, 58, 317
midrange 70
sample 71, 78

Rayleigh distribution 116, 165, 167, 168, 198,
198, 200–205, 210–213, 215, 291

recurrence interval 42, 42, 43, 44, 219, 220, 314
return period 42

relative efficiency 76
reliability analysis 338
reliability function 26
Reverse Generalized Extreme Value distri-

bution 248, see Weibull distribution,
248

Reverse Gumbel distribution 116, 165, 167,
168, 186, 190, 190, 191–193, 195, 196, 215,
291, 401

Rice distribution 116, 165, 167, 168, 204, 204,
205, 206, 208, 210–213, 215, 256, 291

mean 210
variance 206, 210, 211

Right-Censored Generalized Pareto distribu-
tion 116, 165, 167, 168, 239, 239, 240, 257,
342, 343

River
Baraboo 57–59, 231, 233
Choctawhatchee 325–327, 331, 335
Gila 325, 328
Guadalupe 219, 221, 222

Llano 325, 331, 362–364, 371, 373
Nueces 263–265, 270, 272
Platte 245–247
Rio Uruguai 187
Susquehanna 325, 328
Umpqua 325, 330

root mean square error 80, 80
rug plots 387, 388

S

S language 3
S-Plus xxiv

sample distribution 2, 18, 216
sampling

accuracy 79
bias 46, 78, 79, 79, 80, 81, 214
precision 79
variance 46, 78, 79, 79, 80–83, 98, 361
minimum 89
uniformly-minimum of standard deviation
85

Sen weighted mean 61, 71, 71, 77, 143
object of 71

serial correlation 24
skew 9, 10, 79, 84, 84, 93, 94, 96, 98, 156, 374,

383
bias 98
boundedness 98
sample 86, 90, 93, 94, 96
unbounded unlike L-skew 121

skewness, concept of 9, 63, 86, 93, 94, 96, 97,
118, 121, 145, 152, 154, 156, 187, 200, 204,
216, 256, 259, 280, 296, 299, 374, 375, 381,
386, 398

distribution asymmetry 9, 93, 96, 113, 123,
283, 302, 330, 399

distribution shape see distribution
parameter, shape

distribution symmetry 9, 19, 21, 86, 97, 120,
123, 144, 185, 225, 295, 313, 375, 378, 388,
399

negative 63, 186, 236
positive 19, 21, 63, 150, 181, 186, 302, 310,

330, 388
zero 386
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soil liner 230
Spearman’s Rho 387, 390, 397
standard deviation 9, 14, 27, 41, 44, 48, 51, 60,

75, 76, 79, 83, 83, 84–90, 98, 148, 171, 173,
204, 214, 229, 243, 250, 263, 349, 367, 372,
374, 376

bias of 89
sample 85, 85, 86, 88–90, 92

standard normal deviate 58, 249, 328, 331
standard normal variate see standard normal

deviate
Stata 11
State

Arizona 325
Colorado ii
Florida 325, 335
Illinois 188
Indiana 188
Louisiana 368
Montana xxiii
Nebraska 245–247, 257
New Mexico 301, 368
New York 325
Oklahoma 301, 368
Oregon 325
Texas xxiii–xxv, 11, 53, 54, 97, 181, 218,

219, 221–224, 256, 263–265, 270, 272, 281,
296, 301, 314, 315, 317, 319, 322, 323, 325,
362–364, 368, 370, 371, 373, 378, 381

Panhandle region 314, 315, 317, 319, 322,
323

Wisconsin 57, 59, 231, 233
statistical

accuracy 80, 244
bias 79, 80, 82, 84, 87, 89, 90, 92–94, 96, 98,

145, 146, 148, 174, 296, 369, 370, 374, 377,
378, 381, 385

bias ratio 146, 149
concomitants 386, 386
consistency 114, 150, 150, 152, 155, 156
contamination 150, 151, 155, 156
efficiency 62, 75, 76, 80, 134
estimator 45, 80–82, 84–86, 89
goodness-of-fit 13, 298, 336, 376, 400, 401
Chi-squared 400
Kolmogorov-Smirnov test 13

Komogorov-Smirnov 400
outside scope of text 13, 299
Shapiro-Wilk test for normality 13

high outlier 150, 151, 153, 242, 375
inconsistency 155, 156
low outlier 97, 228, 242, 375
moments 47, 78, 79, 99
central product 83

outlier 16, 22, 80, 113, 241, 242
performance 80, 80
population 45, 46, 46, 49
precision 80
relative efficiency 76, 80, 80, 81, 235
robustness 8, 9, 71, 74, 80, 114, 139, 150
sample 46
simulation 12, 16, 45, 45, 46, 49, 65, 68, 73,

76, 80, 82, 89, 91–94, 104, 110, 137, 144, 145,
147, 149, 153, 159, 175, 209, 215, 241, 257,
261, 279, 280, 303, 304, 311–313, 337, 349,
361, 363, 364, 369, 373–376, 378, 381, 384,
392, 395

bootstrap 130, 152, 152
pseudo-random numbers 45

unbias 9, 80, 80, 82, 84–86, 89, 101, 106,
114–116, 119, 124, 125, 145, 146, 351, 361,
377, 378, 383, 386, 387

streamflow 24, 48, 245, 336, 400
annual maximum 336
annual peak 56–58, 60, 97, 219, 222, 231,

256, 257, 263–265, 270–272, 296, 324, 326,
328, 330–332, 335, 362, 368, 371, 375

annual volume 358
daily mean 245, 257
flood 16, 42, 43, 97, 99, 113, 186, 187, 235,

315, 336, 375, 400
flood control levees 2
flood plains 56, 324
flood risk 335
flood volume 376
flow-duration curve 245, 257
hydrograph 179, 180, 201, 203
unit 179

peak of hydrograph 180, 201
river-flow modeling 315
time of peak 201
water quality 48
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Student 3t distribution 254
Student t (3-parameter) distribution 254, 255
survival analysis 338, 348, 352, 398
survival function 26, 177, 348
empirical 348

survivor function see survival function
SWSTAT 375

T

TKG2 xxiv, 381
TL-moments xxv, 8, 72, 77, 79, 112, 115, 128,

139, 139, 140–143, 157, 183–186, 214,
240–242, 257, 275–278, 280, 291

alternative version 141, 141
asymmetrical trimming 139, 143
method of 275
ratios 140
recurrence relations of 141
robustness 241, 242
sample 115, 116, 143, 143, 144, 279
symmetrical trimming 72, 139, 142–144,

183, 185, 240, 275
theoretical 139, 140
TL-mean 143, 144
TL-mean, as Sen weighted mean 143

transistor data 346
Trimmed Generalized Lambda distribution

116, 165, 167, 168, 275, 275, 276–279, 296
Trimmed Generalized Pareto distribution 116,

165, 167, 168, 240, 240, 241, 257
trimmed L-moments see TL-moments

U

U.S. Geological Survey xxiii, xxiv, 56, 219, 222,
231, 245, 263–265, 270, 272, 324, 325, 335,
362, 368, 371

Uniform distribution 45, 68, 136, 136, 137, 138,
197, 198, 238, 391

United States 188, 324, 326, 328, 330, 332
UNIX 3

V

variance 67, 80, 83, 83, 84, 85, 88, 98, 148, 206
sample 84, 85, 86, 88, 367

violin plots 318, 318, 319

W

Wakeby distribution 99, 114, 116, 160, 165,
167, 168, 260, 280, 280, 281, 283–290, 292,
295–297, 300, 309, 327–332, 334–336, 362,
364–371, 373, 400

Weibull distribution 2, 25, 26, 35, 55, 116, 160,
165, 167, 168, 170–172, 177, 191, 195, 196,
247, 247, 248–251, 257, 258, 349, 401

Weibull plotting positions see plotting
positions, Weibull

wind
speed
annual maximum 218, 256, 370
hurricane maximum 370
offshore 400
risk 219

storm surge 42
wave height 186

Windows 3
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Index of R Functions

This index lists in alphabetical order the R functions used in the text. The functions are
cataloged by heredity,whether built-in toR, listed by package, or other. The page forwhich
functions are discussed within paragraphs are typeset in the normal font. The beginning
page the code example for which functions are used only within the example and not
discussed in the text are typeset in an italic font.

Built-in to R
IQR() 46, 58
Sys.sleep() 196, 284
abline() 146, 220
abs() 32, 72, 75, 135
any() 38
as.character() 36
as.list() 353
attach() 20, 53, 57, 231, 248, 263, 270
attributes() 46, 47
besselI() 205, 207
boxplot() 19, 59, 317, 325
c() 17, 35, 36, 49, 54, 57, 66, 69, 74, 81, 82,

87, 102, 108, 110, 123, 124, 128, 129, 132,
135, 142, 144, 146, 148, 149, 151, 163, 164,
166, 169–171, 175, 177–179, 181, 182, 184,
185, 188, 190, 193, 198, 202, 209, 210, 212,
219, 224, 226, 227, 234, 238, 241, 242, 246,
263, 265, 266, 271, 274, 279, 284, 286, 291,
292, 303, 304, 310, 311, 318, 320–322, 327,
329, 346, 350, 355, 357, 359, 360, 363, 364,
366, 368, 369, 371, 376

cat() 57, 66, 81, 82, 87, 102, 102, 110, 130,
132, 135, 138, 144, 164, 175, 177, 179, 181,
182, 209, 226, 242, 266, 284, 369, 376, 390

cbind() 34

choose() 105, 106, 125, 126, 127, 129
cor() 387, 389, 390, 390
data() 18, 20, 53, 53, 57, 231, 245, 249,

263, 270, 316, 325, 342, 353, 362, 371
data.frame() 17, 18, 57, 219, 357, 368,

388, 391, 393
dbinom() 103, 106
detach() 20, 57, 263
dev.off() 6, 6, 196
diff() 47
dnorm() 162
do.call() 318
dweibull() 25
ecdf() 52
exp() 66, 85, 195, 198, 207, 208
factorial() 106
file.choose() 219, 220
floor() 30
for() 89, 90, 91, 107, 110, 131, 132, 144,

146, 149, 152, 175, 195, 198, 208, 210, 212,
234, 242, 266, 284, 291, 303, 311, 311, 313,
369, 371, 376, 393

function() 32, 38, 39, 66, 69, 73, 76, 81,
125, 126, 129, 188, 207, 208, 286, 320, 359,
371, 392, 393

gamma() 64, 85, 85
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gsub() 220
help() 5, 15, 19, 91, 91, 387
hist() 19
if() 32, 39, 81, 152, 169, 207, 208, 266, 284,

286, 291, 359, 392, 393
ifelse() 210, 266, 371, 392
integrate() 66, 102, 125, 125, 126, 185,

207, 208
is.na() 393
is.null() 38
ks.test() 13
layout() 19, 131, 201, 208, 224, 230, 231,

235, 248, 286, 292, 294, 329, 331
legend() 35, 149, 193, 210, 226, 227, 246,

263, 265, 279, 284, 327, 350, 360, 363, 364,
366

length() 17, 71, 73, 86, 107, 132, 207, 208,
210, 292, 350, 360, 371, 392

lgamma() 64, 66, 85
library() 15, 15, 198, 272, 273, 318, 353,

357
lines() 35, 39, 49, 55, 57, 146, 149, 171,

171, 193, 195, 202, 208, 210, 212, 226, 227,
231, 246, 249, 263, 265, 271, 274, 279, 284,
286, 308, 322, 329, 334, 342, 350, 355, 360,
363, 364, 366, 371

list() 81, 107, 124, 198, 317, 318, 325
log() 188, 198, 371
log10() 57, 151, 152, 231, 246, 249, 263,

265, 271, 334, 363
ls() 18
matrix() 19, 131, 201, 208, 224, 231, 235,

286, 292, 294, 329, 331
max() 35, 45, 49, 68, 68, 69, 202, 266, 291,

318, 369
mean() 5, 20, 49, 57, 66, 68, 69, 71, 81, 81,

82, 86, 87, 89, 98, 110, 129, 135, 144, 146,
149, 155, 175, 209, 212, 234, 242, 265, 311,
312, 376, 389

median() 72, 73, 98
min() 35, 45, 68, 202, 266, 291, 318, 369,

392
mtext() 59, 249, 286, 292, 329
names() 18, 32, 46, 53, 138, 318
next() 284, 291, 292, 393
optim() 188, 197, 333

options() 284
par() 318
paste() 286
pbinom() 106
pdf() 6, 6, 91, 196, 365
pdffile() 220
pgamma() 31, 170
pgeom() 44
plot() 25, 35, 36, 39, 39, 49, 54, 56, 57, 58,

91, 94, 131, 135, 146, 149, 151, 152, 171,
181, 184, 188, 190, 193, 195, 202, 208, 210,
220–222, 224, 226, 227, 231, 245, 246, 263,
264, 265, 271, 274, 279, 284, 286, 292, 304,
322, 329, 334, 342, 350, 355, 360, 362, 363,
369, 371, 388, 393, 395

pnorm() 27, 151, 162, 263
points() 54, 92, 131, 135, 188, 190, 210,

212, 220, 250, 304, 311, 321, 322, 327, 342,
350, 369, 372, 395

pp() 362
print() 6, 31, 46, 47, 69, 71, 72, 75, 76,

106, 127, 142, 143, 146, 148, 169, 177, 219,
234, 241, 270, 273, 323, 326, 331, 353–355,
357, 373

pweibull() 248
q() 5
qbeta() 69
qexp() 30, 34–36, 65, 68, 68, 69, 178
qgamma() 31, 182
qnorm() 32, 34, 45, 46, 49, 54, 57, 58, 151,

162, 164, 210, 211, 220, 231, 249, 263, 265,
271, 284, 328, 329, 334, 360, 363, 364, 366

quantile() 52–55, 353, 357
qweibull() 35
range() 47
rbind() 34
rcauchy() 144, 279
read.csv() 17, 53
read.cvs() 17
read.cvs2() 17
read.delim() 17
read.delim2() 17
read.table() 17, 219
rep() 107, 359, 359
replicate() 66, 68, 73, 76, 82, 129, 145,

155

430



Texas Tech University,William H. Asquith, May 2011

return() 32, 38, 39, 69, 73, 76, 81, 86, 107,
125, 126, 188, 207, 208, 286, 320, 359, 371,
392, 393

rexp() 65, 68, 135, 143
rgamma() 91, 138, 149
rgb() 91, 152, 284, 304, 322, 327, 364, 365,

366, 388
rm() 17
rnorm() 45, 49, 53, 72, 76, 81, 89, 90, 106,

107, 127, 151, 154, 155, 174, 175, 273, 357,
388, 391

round() 34, 34, 54, 57, 66, 82, 87, 102, 110,
129, 132, 135, 144, 175, 178, 181, 182, 209,
219, 226, 234, 242, 266, 354, 355, 389, 390

rug() 388
runif() 45, 46, 68, 68, 69, 137, 209, 376,

393
rweibull() 55, 196
sample() 129, 130, 152, 153
sapply() 86, 110, 125, 126, 129, 164, 178,

317, 318, 359
save() 18
sd() 44, 49, 57, 58, 81, 85, 87, 89, 98, 149,

175, 234, 265, 373
segments() 304, 304, 311
seq() 25, 31, 34, 35, 36, 49, 89, 90, 107, 131,

144, 146, 149, 152, 175, 202, 208, 234, 242,
249, 274, 279, 284, 286, 303, 311, 322, 350,
355, 369, 376

set.seed() 66, 72, 273, 279
shapiro.test() 13
sin() 207
sort() 53, 55, 57, 66, 73, 86, 107, 132, 135,

151, 170, 171, 193, 195, 220, 231, 246, 248,
249, 263, 270, 274, 316, 329, 334, 342, 350,
359, 371

sqrt() 76, 81, 82, 86, 89, 102, 209, 284,
286, 294, 373

stop() 207
str() 74, 108, 108, 128, 163, 166, 181, 181,

185, 224, 232, 238, 320, 326, 362
sum() 73, 86, 125, 126, 132, 207, 208, 234
summary() 44, 46, 58, 81, 89, 89, 90, 138,

145, 155, 234, 373
system.time() 69
try() 392

uniroot() 392
var() 76, 76
vector() 89, 90, 110, 131, 132, 146, 149,

152, 175, 208, 212, 234, 242, 303, 350, 369,
376, 393

warning() 39, 286, 393
weighted.mean() 320, 368
while() 266
write.table() 17

Other Functions
Barnett() 76
Ftrans() 38, 39
HF() 38
MOcop() 392
MarcumQ1() 208
NADA:Cen() 353, 357
NADA:cenfit() 353, 357
beanplot:beanplot() 318
derCOPinv() 392, 393
func() 392
grv() 371
lambda.by.cdf() 125, 125, 126
lattice:contourplot() 198
maxOstat.system() 129
myWAK() 286, 287
myquagum() 188
ostat.sd() 86
qua.by.recursion() 32, 33
qua.ostat() 69
sam.biasvar() 73, 81, 82, 82, 83
simulateCopula() 392, 393, 395
test.pwm.pp() 107, 108
trim.mean() 72, 73
vioplot:vioplot() 318

Package: lmomco
LaguerreHalf() 209
Lcomoment.Wk() 131, 132, 132
Lcomoment.coefficients() 390,

391, 391
Lcomoment.correlation() 389
Lcomoment.matrix() 388, 389–391
T2prob() 43, 323
TLmom() 115
TLmoms() 72, 115, 143, 157, 279
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are.lmom.valid() 115, 124, 170, 284,
284, 286

are.par.valid() 166, 168, 170
are.parTLgld.valid() 168
are.parTLgpa.valid() 168
are.parcau.valid() 168
are.parexp.valid() 168, 169
are.pargam.valid() 168
are.pargev.valid() 168
are.pargld.valid() 168
are.parglo.valid() 168
are.pargno.valid() 168
are.pargpa.valid() 168
are.pargum.valid() 168, 169, 188
are.parkap.valid() 168
are.parkur.valid() 168
are.parln3.valid() 168
are.parnor.valid() 168
are.parpe3.valid() 168
are.parray.valid() 168
are.parrevgum.valid() 168
are.parrice.valid() 168
are.parwak.valid() 168
are.parwei.valid() 168
cdfcau() 165
cdfexp() 165, 178
cdfgam() 165, 170
cdfgev() 159, 165, 220, 249
cdfgld() 165
cdfglo() 165, 224
cdfgno() 165
cdfgpa() 165
cdfgum() 15, 165
cdfkap() 165
cdfkur() 165
cdfln3() 165
cdfnor() 126, 162, 165
cdfpe3() 165
cdfray() 165
cdfrevgum() 165
cdfrice() 165, 208, 210, 210
cdfwak() 165, 286
cdfwei() 165, 249
check.fs() 38
check.pdf() 201, 230, 249, 286, 287, 292,

292, 294, 330

dist.list() 148, 164, 291
dlmomco() 29, 32, 33, 162, 171, 291
expect.max.ostat() 66
fliplmoms() 347, 356, 357
gen.freq.curves() 363, 364, 366
genci() 363, 368, 369
gini.mean.diff() 74, 76
hlmomco() 29, 171
is.TLgld() 168
is.TLgpa() 168
is.cau() 168
is.exp() 168
is.gam() 168
is.gev() 168
is.gld() 168
is.glo() 168, 169
is.gno() 168
is.gpa() 168
is.gum() 168
is.kap() 168
is.kur() 168
is.ln3() 168
is.nor() 168
is.pe3() 168
is.ray() 168
is.revgum() 168
is.rice() 168
is.wak() 168
is.wei() 168
lcomoms2() 391, 394, 396
lmom.ub() 55, 169
lmom2par() 138, 170, 171, 171, 230, 291,

292, 350, 371
lmom2pwm() 108, 111, 115, 123, 157
lmom2vec() 115, 164, 170
lmomRCmark() 115, 350
lmomTLgld() 116, 167
lmomTLgpa() 116, 167, 241
lmomcau() 116, 167, 186
lmomexp() 116, 167, 177, 182
lmomgam() 116, 148, 167, 181
lmomgev() 116, 167, 226
lmomgld() 116, 167
lmomglo() 116, 167, 224, 226
lmomgno() 116, 167, 231
lmomgpa() 116, 167, 238, 238
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lmomgpaRC() 116, 167
lmomgum() 116, 167
lmomkap() 116, 167
lmomkur() 116, 167, 197, 198
lmomln3() 116, 167
lmomnor() 116, 166, 167
lmompe3() 116, 167
lmomray() 116, 167, 202, 202
lmomrevgum() 116, 167
lmomrice() 116, 167, 210, 210, 213
lmoms() 75, 115, 120, 124, 127, 132, 132,

138, 149, 152, 154, 157, 174, 177, 178, 220,
231, 248, 249, 263, 266, 270, 273, 303, 303,
311, 318, 326, 350, 359, 362, 371, 373, 376,
389, 390

lmoms.ub() 115
lmomsRCmark() 115, 350, 351, 354–358
lmomwak() 116, 167
lmomwei() 116, 167
lmorph() 115, 124, 128, 177, 178, 197, 224,

231, 238
lmrdia() 212, 212, 306, 306, 308, 308, 309,

309, 321, 372
nonexceeds() 39, 94, 181, 184, 190, 210,

224, 226, 264, 291, 328, 364
par2cdf() 170, 170
par2lmom() 145, 170, 224, 238
par2pdf() 170
par2qua() 69, 170, 184, 329, 334, 360
par2vec() 164, 170
parTLgld() 167, 271, 279
parTLgpa() 167
parcau() 167, 279
parexp() 167, 177, 178
pargam() 110, 167, 181, 303
pargev() 167, 220, 226, 248
pargld() 167, 270, 271, 273, 274, 331, 333,

334
parglo() 167, 169, 226, 303
pargno() 167, 230, 231, 265, 354, 357
pargpa() 167, 342, 360
pargpaRC() 167, 342
pargum() 167, 169, 193, 193
parkap() 167, 263, 266, 294, 311, 320, 326
parkur() 167, 197
parln3() 167

parnor() 165, 167, 232
parpe3() 167, 303
parray() 167, 201
parrevgum() 167, 193, 196
parrice() 167
parwak() 167, 284, 286, 286, 328, 362, 368
parwei() 55, 167, 248
pdfcau() 165, 184, 279
pdfexp() 165
pdfgam() 165, 202
pdfgev() 165, 226
pdfgld() 165, 279
pdfglo() 165, 226
pdfgno() 165
pdfgpa() 165
pdfgum() 165
pdfkap() 165
pdfkur() 165
pdfln3() 165
pdfnor() 162, 165
pdfpe3() 165
pdfray() 165, 201, 202
pdfrevgum() 165
pdfrice() 165, 208, 208
pdfwak() 165
pdfwei() 165
plmomco() 29, 32, 33, 162, 169, 170, 171
plotlmrdia() 212, 308, 309, 310, 311,

321, 327, 372
pmoms() 15, 87, 89, 90, 94, 98, 152, 155,

376
pp() 53–55, 57, 151, 170, 193, 220, 231, 248,

249, 263, 270, 318, 326, 342, 350, 359
prettydist() 291
prob2T() 43, 151, 220
pwm() 101, 110, 342
pwm.gev() 101, 107, 108, 111, 125
pwm.pp() 101
pwm.ub() 101, 106, 111
pwm2lmom() 108, 110, 111, 115, 123, 125,

341, 342, 346, 346, 347
pwm2vec() 101, 164, 170
pwmLC() 347
pwmRC() 342, 346
qlmomco() 39, 162, 171, 264, 274, 291,

291, 342, 350, 354, 355, 355, 357, 371
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qua.ostat() 69, 70
qua2ci() 369
quacau() 165, 184, 279
quaexp() 165, 169, 178, 178, 179
quagam() 165, 181, 182, 202
quagev() 165, 220, 226, 249
quagld() 165, 270, 271, 279
quaglo() 165, 169, 224, 226, 226
quagno() 165
quagpa() 165, 360
quagum() 165, 167, 169, 188, 190, 193
quakap() 165, 263, 271
quakur() 165
qualn3() 165
quanor() 162, 165, 231
quape3() 94, 165
quaray() 165, 202
quarevgum() 165, 193
quarice() 165, 209, 210, 210
quawak() 165, 284, 286, 363, 364, 366
quawei() 55, 165, 249
rlmomco() 94, 110, 130, 138, 146, 162,

171, 171, 193, 212, 266, 303, 311, 359
sen.mean() 71, 72, 72, 73
theoLmoms() 115, 123, 125, 166, 184, 186,

194, 194
theoLmoms.max.ostat() 115
theoTLmoms() 115, 142, 166, 185, 186,

241
theopwms() 101, 102, 111
vec2TLmom() 115
vec2lmom() 115, 120, 123, 124, 128, 164,

170, 181, 193, 197, 201, 225, 230, 284, 286,
291, 294, 303, 311, 320, 368

vec2par() 29, 33, 39, 69, 94, 102, 110,
123, 126, 142, 146, 148, 163, 164, 164, 166,
170, 170, 178, 179, 184, 185, 188, 190, 202,
208–210, 212, 224, 238, 241, 266, 270, 273,
274, 333, 359, 376

vec2pwm() 101, 108, 164, 170, 346, 347
z.par2qua() 360

Package: GLDEX
Lcoefs() 272
Lmomcov() 272
Lmomcov_calc() 272

Lmoments() 272
Lmoments_calc() 272
fun.RMFMKL.lm() 273
fun.RPRS.lm() 273, 273, 274
fun.data.fit.lm() 273
t1lmoments() 272

Package: Lmoments
Lmoments() 116, 127
t1lmoments() 143
t1moments() 116

Package: lmom
cdfexp() 160
cdfgam() 160
cdfgev() 159, 160
cdfglo() 160
cdfgno() 160
cdfgpa() 160
cdfgum() 160
cdfkap() 160
cdfln3() 160
cdfnor() 160
cdfpe3() 160
cdfwak() 160
cdfwei() 160
lmrexp() 119, 160
lmrgam() 119, 160
lmrgev() 119, 160
lmrglo() 119, 160
lmrgno() 119, 160
lmrgpa() 119, 160
lmrgum() 119, 160
lmrkap() 119, 160
lmrln3() 119, 160
lmrnor() 119, 160
lmrpe3() 119, 160
lmrwak() 119, 160
lmrwei() 119, 160
pelexp() 160
pelgam() 160
pelgev() 160
pelglo() 160
pelgno() 160
pelgpa() 160
pelgum() 160
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pelkap() 160
pelln3() 160
pelnor() 160
pelpe3() 160
pelwak() 160
pelwei() 160
quaexp() 160
quagam() 160
quagev() 160
quaglo() 160

quagno() 160
quagpa() 160
quagum() 160
quakap() 160
qualn3() 160
quanor() 160
quape3() 160
quawak() 160
quawei() 160
samlmu() 119, 127, 157
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