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Abstract

Sampling design algorithms are usually optimization problems posed in two ways: (1)
Minimize the total cost of the sampling program without going below a prescribed minimum
reliability measure, and (2) Maximize the reliability measure of the parameters without exceeding a
prescribed maximum experimental budget. The variables that are optimized are the sampling
locations and sampling times. The reliability measure is usually some measure of the parameter’s
variability or the prediction variability.

This research compares three reliability measures that operate on the estimated parameter’s
covariance matrix. A set of designs is selected and each reliability measure is used to select the
best design of the set. The objective of this research is to determine if the A-optimal criterion, D-
optimal criterion, and CR-optimal criterion choose the same design or different designs.

The particle tracking method is used to model the transport of mass in the porous medium.
Particle tracking is difficult to implement because a large number of particles should be used to
simulate continuum behavior. The large number of particles are simple to manage on a computer
with a large memory, and the displacement calculations are simplified if the computer is fast.

These reasons made the HARC NEC SX-2 a fine choice for this research.
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Introduction

The need to predict and control the movement of pollutants carried by groundwater arises because
of increased awareness of the environmental (and legal) consequences of contaminated
groundwater. Models are used to predict the response of a groundwater system to various
management policies. If the model is reasonably accurate, these predictions can be used to design
remediation schemes and water supply protection policies. If the model is inaccurate, one can still
make predictions and designs but will expect to be frequently disappointed by their designs.
Estimating the parameters in these models, which is really the process of selecting a particular
model from a family of models, is an important step in the design the remediation schemes and
water supply protection policies.

Parameter estimation in groundwater has been studied by many, a state of the art review is
given by Yeh (1986). The practice of parameter estimation in groundwater is complicated because
the physical structure cannot be directly observed. The parameters must be inferred from
observations at a few spatially and temporally distributed locations. The topic of sampling design
covers the theory and practice of where, when, and how to sample so that the data obtained give
the most information for a given budget. An important implied assumption in many sampling
design problems is that the family of models is correct. For instance Darcy's law is seldom
challenged as the model of flow in groundwater but the hydraulic conductivity value, which is the
parameter that selects the particular model, is seldom accepted with complete confidence.
Emerging stochastic theories of flow and transport are attempts to address the question of which
model family is correct. The quantification of the "correctness" of a model is an area of emerging
research that also relies on stochastic theories. The study of which model family is correct and
how to quantify the "correctness” of a model is beyond the scope of this work.

An algorithm for sampling design that determines the observation locations and the
sampling times should consider the trade-off between the economy of few locatons and few
samples with the increased information when many locations are sampled at many times. In

transport problems a further challenge arises because a location becomes useless after the



contaminant mass has passed the location (Cleveland, 1989). Sampling design algorithms are
usually optimization problems posed in two ways: (1) Minimize the total cost of the sampling
program without going below a prescribed minimum reliability measure, and (2) Maximize the
reliability measure of the parameters without exceeding a prescribed maximum experimental
budget. These two approaches are probably equivalent (in optimization jargon (1) and (2) are
duals) but this equivalence has not been proved. The variables that are optimized are the sampling
locations and sampling times. The reliability measure is usually some measure of the parameter's
variability or the prediction variability.

This research compares three reliability measures that operate on the estimated parameter's
covariance matrix. A set of designs is selected and each reliability measure is used to select the
best design of the set. The resulting designs are compared using a simulation sensitivity analysis
to determine what features of the model sensitivites are selected for by the particular measures.
The simulation model uses a Lagrangian particle tracking method to model transport because this

method generates no numerical dispersion.



Background

Sampling design (experimental design) procedures developed in statistics are used in
medicine, agriculture, automatic control, physics, geosciences, and other areas of research.
Steinberg and Hunter (1984) reviewed experimental design and presented algorithm descriptions of
the more successful schemes. Two popular measures of parameter reliability used in those
schemes are the D-optimality measure and the A-optimality measure. A D-optimal design satisfies
all constraints (cost, complexity, etc.) and minimizes the determinant of the parameter estimates'
covariance matrix. The Wilk's generalized variance of a vector valued random variable is given by
the determinant of the variable's covariance matrix, so this criterion can be viewed as a variance
reducing approach. The A-optimality measure uses the trace of the estimate's covariance matrix.

Hsu and Yeh (1989) used A-optimailty considerations for minimizing pumping test costs
subject to parameter reliability and institutional constraints. Nishikawa and Yeh (1989) used D-
optimality considerations for a similar problem. The combinatorial problem was solved using
exhaustive search. The problem was tractable by this method because the unknown parameter set
was kept small enough so that the matrix determinants could be performed analytically. For larger
parameter sets the D-optimal or A-optimal criterion could be determined by co-factor expansion or
singular value decomposition, but the computational burden becomes large because of the
combinatorial nature of the problems.

Cleveland and Yeh (1990) used a simplified measure that used the trace of the estimates'
information matrix for maximizing the information in a tracer test experiment subject to a fixed
experimental budget. This measure.which they called CR-optimality)has computational advantages
because the inversion of a matrix is avoided and the combinatorial problem can be solved using
zero-one dynamic programming.

Statistical implications for transport parameter identification were studied by Wagner and
Gorelick (1987). They found that parameters are more reliably estimated if sampling is distributed

in both space and time. Knopman and Voss (1987) studied the behavior of sensitivities in one-



dimensional solute transport equations and found that parameters are most accurately estimated at
points with high sensitivity to the parameters but designs that minimize the variance of one estimate
do not necessarily minimize the variance of other estimates.

Cleveland (1989) suggested that D-optimal designs, A-optimal designs, and CR-optimal
designs all tend to choose designs that sample at points in space and time where some "joint"
sensitivity to all the estimated parameters is high. McKinney and Loucks (1991) used an
independent uncertainty approach with Monte-Carlo analysis and generated designs with this
tendency. One interesting observation is that Cleveland (1989), Nishikawa (1989), and McKinney
(1991) have noted that the designs generated are counter intuitive. An explanation is that the
parameter sensitivity is a function contaminant mass. As the mass becomes more diffuse in space
the ability to detect concentration contrasts as a result of subtle parameter changes is decreased.
Design algorithms that tend to choose designs where "joint” sensitivity is high, will always choose
designs near source areas and steep concentration gradients. This work presents an example where
the A-optimal criterion, D-optimal criterion, and CR-optimal criterion all tend to choose designs
with this property. This fact indicates that another design criterion should be sought that selects

designs based on a different property.



Objecti

The objective of this research is to determine if the A-optimal criterion, D- optimal criterion,
and CR-optimal criterion choose the same design or different designs. Simulation is used to
generate covariance structures for four designs and then determine the value of each of the
evaluator functions. This investigation requires a simulation model that describes the flow and
transport of a contaminant in a porous medium, a method of computing the partial derivatives of
the model with respect to the transport parameters, and the calculation of the performance criteria
for each design.
Flow and Transport Modeling

The transport equation of a conservative solute is (Dagan,1987),

ne% + =div(D grad(C)-C q)

where C is the concentration, ¢ is the fluid seepage velocity, n e is the effective porosity, and D

is the hydrodynamic dispersion tensor.
The potentiometric head field is obtained by solving the following equation that describes
the hydraulic head in a confined isotropic aquifer (Bear, 1972),

%?— + N =div (K grad (h)) 2

where h is the hydraulic head, X is the hydraulic conductivity tensor, and N is a source term.

The seepage velocity field is obtained from the potentiometric head distribution by Darcy's
law (Bear, 1972)

q=-Kgrad(h). 3)

The numerical solution of Equation (1) poses problems because solution schemes often
introduce purely numerical dispersion.  This research uses the Discrete Particle Random Walk
(DPRW) method that models the effects of convective transport using a Lagrangian approach, and
the effects of kinematic dispersion using a random walk model (Ahlstrom et al. 1977; Prickett et al.
1981). The DPRW method is one of several Lagrangian type methods for solving differential

equations that involve the convective transport of mass. Lagrangian methods de-couple the
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convective transport, which is a hyperbolic type differential equation, and the dispersive transport,
which is a parabolic type differential equation. The convective part is solved using the method of
characteristics and the dispersive part by any parabolic method.

The DPRW method has the advantage in that it does not introduce numerical dispersion, it
conserves mass, and it can take into account reactions during transport. The DPRW method has
an additional advantage because it can be easily adapted test emerging transport theories that are
based on particle position probabilities. The method is difficult to implement because a large
number of particles should be used to simulate continuous behavior. The large number of particles
are easily handled using any computer with a large memory, but the determination of displacement
is simplified if that computer is also fast. These reasons made the HARC NEC 5X-2 a good
choice for this method.

The DPRW method models particle transport with step equations of the form,

x(t + Ar) = x(1) +-ir—t’i*d: +z (4)
e

where x(1) is the position vector of a particle at time ¢ , g(t) is the seepage velocity vector at x(1)
and time ¢, Ar is the time step, and z is a random deviate from a multivariate normal distribution
with a covariance matrix given by (2*Ar * D). The second term in (4) represents the convective
transport and the third term represents the dispersive transport. Typically the velocity field is
augmented with a dispersion gradient to account for stagnation zones in a variable velocity field.
This procedure was replaced in this study by including molecular diffusion in the dispersion
tensor. This approach simplifies the modelling and still produces the desired behavior oi some
spreading even at zero velocity points.

The relationship between Eguation (1) and (4) is be illustrated by coupling a hyperbolic
convective transport equation, and a parabolic dispersion equation. If the concentration is defined
as the number of particles of the same mass in a small volume Equation (4) without the random

displacement closely approximates the behavior of the a hyperbolic convective transport equation,




"% = -div(Cq) 5)

The random displacement term closely approximates the behavior of a parabolic dispersion

equation along a characteristic curve,

n e% = div(D grad(C)) (6)

Coupling Equations (5) and (6) in an Eulerian sense produces Equation (1). Other methods such
as the U.S.G.S. MOC (method of characteristics) code (Konikow and Bredehoeft, 1978) actually
solve (5) and (6) then recombine the results. The DPRW method, which has full analogy to the
Fokker-Plank equation (Thompson et al.,1989), closely approximates (5) and (6) when a large
number of particles are used. When the random step is taken from the Normal distribution,
Fickian type dispersion is reproduced.

The seepage velocity used in Equation (4) is obtained from Equations (2) and (3).
Equation (2) is solved using an alternating direction implicit scheme on a rectangular grid. The
scheme is unconditionally stable, and is economical in its use of computer memory(Marsily,
1986). The gradient of the head distribution is determined by numerical differentiation using a
centered difference scheme. This gradient is then used in Equation (3) to produce the seepage
velocity field.

Model Sensitiviti

The partial derivative field of modeled concentration with respect to the transport
parameters (dispersivities, conductivities, porosities, etc.) is called the sensitivity field. These
sensitivities are used to construct performance measures for selecting competing designs. The
method used to compute the sensitivity field for a particular design in this work is the influence
coefficient method (Yeh, 1986). The sensitivities at a design location are computed by divided
differences and assembled into the Jacobian matrix for the particular design. For instance,

suppose two sample locations at three times are used. The Jacobian would have the form
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where Oi is the i-th parameter of interest.

Desien Perf Criteri

An optimal design algorithm typically uses an optimization model to locate as well as
schedule sampling sites. A performance criterion is used to evaluate a design's relative
performance.  This criterion can be based on a measure of the estimates' covariance matrix,
information matrix, or on some output error criterion. This research tests performance criterion
based on the estimate's covariance and information matrix.

The performance measure is constructed from sensitivity information. For an additive-
error model

COb s ™ CM od el(e) + Error
where

CObs = vector of observed concentrations in space and time

CM odel = Vector of simulated concentrations in space and time
E(Error) =0
V(Error)=X
in which Z is the common covariance matrix of the error. The symbols E and V denote expectation

and covariance operators. Assuming a least-squares-parameter estimation scheme is used, a linear




approximation to the estimate’s covariance matrix is (Yeh and Yoon, 1981):

V(®) =MIMT
where

M=t 1T

For this work the special case is considered where the error structure is

I= 021
where '02 is the variance and I is the identity matrix. The approximation of the estimate's
covariance matrix is

v©) = *aTp!

The information matrix is the inverse of the covariance matrix.

Optimal designs are those which optimize some measure of the covariance structure of the
estimates. When the estimates have small variance they are said to be reliable. To achieve reliable
estimates minimizing the "size" of the covariance matrix or maximizing the "size" of the
information matrix is required. The measures of size investigated in this work are: (1) The
determinant of the covariance matrix (D-optimality). (2) The trace of the covariance matrix (A-
optimality). (3) The trace of the information matrix (CR-optimality with weight matrix I).

Different designs only generate different Jacobians, therefore the 02 is ignored. Cleveland
and Yeh (1990) proposed CR-optimality as a computationally simple alternative to D and A optimal
design criteria. It avoids having to invert the Jacobian and reduces the computational effort in
evaluating different designs in a combinatorial optimization algorithm.

This research computes these criterion in the following manner. The model is operated and
the Jacobian for a particular design is constructed using the influence coefficient method. The
Jacobian is multiplied by its transpose to construct the information matrix. The eigenvalues for this
matrix are computed using Jacobi rotations. Because the matrix is real symmetric, the eigenvalues
are real. The running product of the eigenvalues is used to compute the determinant of the
information matrix. The running sum gives the trace of the matrix. This value is the CR-

optimality criterion. The determinant is saved as a check. The matrix is inverted using repeated
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Gauss-Sidell iteration with varying right hand side vectors that span the parameter space. This
inverse is the linear approximation of the estimates' covariance matrix. The determinant is
computed using Jacobi rotations to compute the eigenvalues of the matrix. This determinant is the
D-optimality criterion. The running sum of these eigenvalues gives the A-optimality criterion.
Experi 1 Desi

The next step after a performance criterion is selected is to construct an optimization
algorithm to construct and select optimal designs according to the problem constraints. Such
design problems tend to be nonlinear integer programming problems. In this work an optimization
algorithm was not used because the number of designs was small and the designs were pre-
specified. The selection criteria are calculated for each design and the best design evaluated by
inspection. The evaluation is different for each criterion: CR-optimality maximizes its measure, A-
optimality minimizes its measure, and D-optimality minimizes its measure.

Example Problem

A hypothetical tracer test is modeled in the hypothetical inhomogeneous aquifer shown on
Figure 1. Two known tracer slugs are injected over a finite time near well W-1. The first mass
slug is assumed to be "injected" without disturbing the flow, the second mass slug is introduced on
the up-gradient side of well W-1. Water is continuously injected at well W-1 and extracted at well
W-2. The underlying hydraulic and transport parameters are listed in Table 1.

The four designs to be tested are listed in Table 2. Designs 1 and 2 are images of each
other (symmetric about the injection well). Designs 3 and 4 are also mirror images of each other
(symmetric about x=8.00 meters).

Figures 2 through 4 show the mass envelope at different times during the simulated tracer
test. The tracer masses were split (using the injection schedule above) to bias the selection
criterion. Previous experience with optimal design algorithms indicated that the algorithms tend to
select designs near a concentration source (Cleveland and Yeh, 1991; McKinney, 1991) and the
split masses were thought to be more challenging for the selection criteria.

Table 3 lists the performance criteria for each design. The CR-optimal, A-optimal, and D-
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optimal criterion behave similarly when testing image designs. From these criteria one can
conclude that design 1 is better than design 2 and design 4 is better that design 3. The CR-optimal,
A-optimal, and the D-optimal criterion select design 4 as the best. By construction, CR-optimal
designs and D-optimal designs should select sample locations that have a high (in magnitude)
parameter sensitivity over time.

Figures 5 through 7 show contour maps of the concentration sensitivity to hydraulic
conductivity in Zone 1 at different times. Figures 8 through 10 show the concentration sensitivity
to hydraulic conductivity in Zone 2 at different times. Figures 11 through 16 show the sensitivity
to longitudinal dispersivity in each zone at different times. The high sensitivity regions in the maps
are at locations where the contour lines indicate steep topography.

Figures 5 and 8 show the high sensitivity locations to conductivity for a simulation time of
one month at locations where the mass envelope map indicates relatively steep concentration
gradients. The sensitivity maps of longitudinal dispersion (Figures 11 through 16) are more
difficult to interpret but show slightly "out of phase" behavior as compared to the hydraulic
conductivity sensitivity. At later simulation times, the mass envelope spreads (Figure 3). The
sensitivity to hydraulic conductivity is still high at locations with high concentration gradients. The
dispersivity maps exhibit a more pronounced "out of phase" high sensitivity behavior. This
behavior was observed by Knoppman and Voss (1987). In their work with one-dimensional
advection-dispersion models, they showed that the maximum sensitivity to dispersion occurs at
locations with maximum concentration profile curvature. The locations maximum curvature in the
particle tracking model occurs slightly out of phase with the locations of steep concentration
gradients. In this example, many of these locations occur at the periphery of the mass envelope.

These contour maps indicate the locations of the candidate design points as small dots on
the maps. For the three sampling times times shown, design 4 has at least one sample location in or
near a high sensitivity region at all times. Because all the selection criterion are constructed to
select locations with high sensitivity the design that has sample locations frequently in regions of

high sensitivity should be selected.
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In this study using these designs the CR-optimal and D-optimal criterion selected designs
that included sampling locations in both zones. This behavior was not observed in earlier studies
by Cleveland (1989) and Cleveland and Yeh (1990). The fundamental difference in this study is
the use of a particle tracking approach rather than classical density (concentration) tracking. An
explanation for the "improved" behavior is that a particle tracking approach preserves concentration
contrasts even at very low concentrations. Further research should extend this work into three
dimensions, and include a non-linear integer programming routine to construct the best cost
constrained designs for various hypothetical aquifers.

Conclusion

This research compared three reliability measures that operate on the estimated parameter's
covariance matrix. A set of designs was selected and each reliability measure is used to select the
best design of the set. The resulting designs were compared using a simulation sensitivity analysis
to determine what features of the model sensitivites are selected for by the particular measures.
The design selection criterion select designs that sample at locations with steep sensitivity
topography. CR-optimality, A-optimality, and D-optimality all select the same optimal design for
the four design problem presented here. Further work is needed to determine the generality of this
behavior. Such work could be used to determine whether CR-optimality, which is computationally
easier, can be substituted for A-optimality or D-optimality.

Improved behavior over earlier work was observed. The improved behavior is attributed to
the simulation method that can preserve concentration contrasts even at low modeled
concentrations. The simulation model used a Lagrangian particle tracking method to model
transport because this method generates no numerical dispersion. Although not emphasized, the
particle tracking method used here requires considerable memory and computer speed, and the

HARC NEC SX-2 supercomputer was critical to the success of this study.
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Tablel, Aquifer Parameters

Parameter Zone 1

K(meters/year) 100.00
n, 0.30
b(meters) 10.00
o 10.00
or 1.00

Injection Rate (meters/year) 1000.00

Extraction Rate (meters/year)

17

50.00
0.20

10.00
10.00

1.00

1000.00




SW N

A,CE
B,F,D
D,F,H
EI.G

18




1 6.944+10° 1.885-10° 530810
2 6.578+102 9.383+10° 291179
3 50010102 4216109 3,854
4 8.7500102 2.791.107! 9.537°13
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Figure 13. Sensitivity to Dispersivity in Zone 1.
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Figure 4. Sensitivity to Dispersivity in Zone 2.
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Figure 15. Sensitivity to Dispersivity in Zone 2.
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Figure 16. Sensitivity to Dispersivity in Zone 2.





