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ABSTRACT: A technique for jointly configuring and scheduling a monitoring net-
work for an aquifer tracer test is presented. A dynamic programming (DP) algo-
rithm is used to select among competing designs for a test to provide data for
estimating aquifer model parameters. A maximal information criterion is used to
evaluate competing designs that satisfy a particular budget constraint. Decision
variables in DP formulation are sampling locations (configuration variables) and
sampling initiation times (scheduling variables). A forward DP solution method is
used, optimal configuration and scheduling are determined by maximizing infor-
mation without exceeding a budget. Maximization of information is argued to be
equivalent to minimizing total cost of installation as well as sampling and analysis
subject to an information demand function constructed from the trace of the co-
variance matrix of the estimated parameters. A tracer test for a confined aquifer
is simulated using a finite difference scheme. A short injection period followed by
a monitoring period is simulated. The DP algorithm is applied to this model to
design a monitoring network and schedule to estimate aquifer characteristics. The
sampling network and schedule is designed with estimation of transmissivity, re-
tardation, and dispersivities in mind. Resulting designs are reasonable, and the
method can be extended to regional-sized problems with little modification.

INTRODUCTION

Economic, budgetary, and other practical limitations generally preclude
the development of a dense monitoring network for obtaining data for the
purpose of parameter estimation for contaminant transport models. Such models
are used to predict the response of an aquifer system to management policies,
and, thus, the model parameters used ultimately affect the management de-
cisions that are made.

In the design of a sparse monitoring network, the configuration of the
sample points in space must be simultaneously considered with the sched-
uling of the sampling and analysis in time. These design variables are in-
terrelated. Given the sampling locations, a schedule is straightforward and
vice versa. However, jointly specifying sampling locations and a sampling
schedule is a difficult optimization problem. This paper describes a tech-
nique for jointly configuring and scheduling a monitoring network that max-
imizes the weighted trace of the estimate’s information matrix when the ob-
servation error is assumed uncorrelated in space and time. The selection
criterion is identical to that described by Cleveland and Yeh (1989), who
used the selection criterion for the optimal design of sample locations for
transport parameter identification under a given experimental duration. The
work here is an extension of Cleveland and Yeh (1989) in that the solution
algorithm considers both sample locations and scheduling.
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Parameters are estimated by an inverse procedure, which is applied after
the monitoring network has been installed and a sampling schedule specified.
Many inverse procedures are available. An exhaustive review of these is
presented by Yeh (1986).

The problem of configuring and operating a network is called “experi-
mental design” in other fields, such as medicine, automatic control, and
physics. Applications in ground-water resources have been investigated by
several researchers in the design of optimal pumping tests (Yeh and Sun
1984; Hsu and Yeh 1989; Nishikawa and Yeh 1989; McCarthy and Yeh
1990). Investigations for the design of optimal tracer tests and passive con-
tamination monitoring have been made by Carrera et al. (1984), Knoppman
and Voss (1987), Wagner and Gorelick (1987), and others. More recently
optimal monitoring network design for ground-water quality has been in-
vestigated by Meyer and Brill (1988), Knoppman and Voss (1988), and Loa-
ciga (1989).

In general, these works use a minimum-cost approach subject to a reli-
ability requirement based on either the determinant or the trace of the esti-
mates’ covariance matrix. Alternatively, one can use the determinant or trace
of the estimates’ covariance matrix as an evaluator, in which case these are
called D-optimal or A-optimal designs, respectively. Steinberg and Hunter
(1984) reviewed the history of many experimental design schemes and de-
scribed the more successful, including A-optimal and D-optimal designs.
Nearly all approaches lead to combinatorial optimization problems that are
further complicated by the fact that a particular design must be specified
prior to evaluation. In this paper, the writers use a different evaluator, a
special case of general criteria discussed by Sacks and Ylvisaker (1968).
The resulting combinatorial optimization problem is solved using the DP
approach, which has the advantage that a design need not be specified prior
to evaluation.

DESCRIPTION OF PROBLEM

It is assumed that a forced gradient tracer test (Fig. 1) will be conducted
to estimate the parameters of transmissivity, storage coefficient, porosity,
dispersivity, and retardation factor for the following flow and transport models.
Two-dimensional ground-water flow for a confined aquifer is governed by
(Bear 1972, 1979)

oh d oh a oh
S—=—\T— | +—\T—)+M. .. ..o )
ot ox ax dy ay
subject to the following initial and boundary conditions
h(x,y,0) = known, YY) E ) e e 2a)
h(x,y,t) = known, V) EA oo (2b)
oh\ ax ah\ dy
T—]— + |T— )] — = known, NEdQ,. .o 20)
ax/ on dy/ on

where h = hydraulic head (length); 7 = transmissivity [(length)z/time]; S
= storage coefficient; M = net injection or extraction rate [(length)3 /time];
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FIG. 1. Conceptual Aquifer

Q = flow region; d€} = boundary of flow region (dQ; U d€), = dQ); and
d/8n = normal derivative to boundary.

The aquifer thickness is assumed to be constant and the transmissivity
varies directly with hydraulic conductivity. Eq. 1 is vertically averaged. The
governing equation of the solute transport process used is (Bear and Verruijt
1987)

aC o aC aC d acC aC
R—=—\|Dy—+Dy— )+ —|Dyy—+Dy, —
a  ox ax dy ay ax . ay

d
— VeV, M e 3
ax ay

subject to the following initial and boundary conditions:
C(x,y,0) = known, G E Q. e (4a)
C(x,y,t) = known, G EAD oo (4b)

(C&_&E_%E)i{_( 5_%£_%£>2y._mwn,
R R ox R dy/ on

GLY) Ed oo e (4¢c)

where C = mass of solute per volume of medium [mass/(length)3]; D.., D,

. = components of hydrodynamic dispersion tensor; R = retardation fac-
tor; V, = average fluid velocity in x direction (length/time); V, = average
fluid velocity in y direction; M = net mass injection or extraction rate [mass/
(length)’(time)]; 1 = flow region; and d} = boundary of flow region (d{},
U dQ, = dQ). This formulation assumes no generation or decay of solute.
The hydrodynamic dispersion coefficients are computed by (Bear 1972, 1979)
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where o, = longitudinal dispersivity; a; = transverse dispersivity; and D*
= molecular diffusion. The average fluid velocities are computed using Dar-
cy’s Law,

v = K oh
e L Tp T (6a)
K oh
|22 P (6b)
e dy

where e = effective porosity; K = hydraulic conductivity (7/b), b = aquifer
thickness; and T = transmissivity. It is assumed that the solute does not
significantly affect the density of the fluid, so the two model equations can
be solved independently and coupled through Darcy’s Law only. Addition-
ally, molecular diffusion is ignored due to its small magnitude.

An upwind formulation is used for the transport equation to minimize os-
cillations associated with the numerical solution when advection dominates.
The formulation may cause smearing of the concentration front. A forward
Euler scheme is used to solve the two equations. Stability was determined
by trial and error. Details of the numerical solution scheme can be found in
Cleveland (1989) and Cleveland and Yeh (1989).

The design algorithm assumes that a least-squares inverse scheme will be
used. Assuming an additive error model

Cobscrved = Cmodcl((')) = 4 X+ (7)

wzhere 20_= vector of parameters (7,5, e,a,, ar,R); E(error) = 0; V(error) =
o°I; o° is the variance; and I is the identity matrix. The symbols E and V
represent mathematical expectation and variance-covariance operator. The
l;;ga;r) approximation of the estimates’ covariance matrix is (Yeh and Yoon

VO) = Gl ) 8)

where J = Jacobian matrix constructed from vectors of model sensitivities
to parameters.

The model sensitivities are the partial derivatives of concentration with
respect to model parameters. The method used to compute these sensitivities
is the influence coefficient method described by Yeh (1986). For a two-point
design [i.e., sample at (x,¢,) and (x,,%,)]

J= ((3C/66,)(x,,t,,0) (3C/30,)(x1,1,,8) ... (3C/36;)(xz,1,,0)
(8C/38)(x2,12,0)  (3C/30y)(x2,12,8) ... (3C/30,)(x2,12,0)

The information matrix is the inverse of the covariance matrix.
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The experimental design problem seeks to maximize some measure of the
information matrix subject to a budget constraint. The measure used is the
weighted trace of the information matrix at selected points in space and time
for a particular design. The trace of the information matrix is used since it
can be computed directly from the sensitivities without inverting a matrix
(unlike covariance measures). The weights are included to account for dif-
ferent magnitudes of sensitivities for different parameters. The measure is
written as

1 1 & [ac

Z, == u@ L, W) == W,( ) ........................... (11)
(g [\ eyt a0,

where Z;, = information at ith location Ith time; J;;, = Jacobian matrix at

ith location /th time; W, = weight on jth parameter; k = number of param-

eters; and tr( ) = trace of matrix. This criterion is a special case of more

general criteria discussed by Sacks and Ylvisaker (1968).

Assumptions about costs are presented in the following. It is assumed that
the injection and extraction site is already first installed and developed. Once
a sampling site is installed, sampling will continue at that site until the end
of the experiment, the duration of which is assumed to be known. With these
assumptions the objective is constructed as the sum of time-integrated in-
formation numbers at each site. For instance if site x; is chosen and sampling
is begun at time ¢ and continued until time #y; then the information available
at that site is

NT
I (i) = Dy Zige e eee e e e e e e .. (12)

I=j

Installation cost is a function of location and depth as well as the cost of
the sampler itself. In an analogous manner to site information, site cost con-
sists of the cost of installation and consequent sampling, where sampling
includes the cost of obtaining and analyzing the sample.

NT
COSt (11, 8) = GO + Dy COB) < o e eaanie et (13)
=j

where C(x,) = installation cost at site x;; and C(x;, #;) = sampling and analysis
cost at site x;, time 1,

The experimental design problem attempts to select locations (configure)
and sampling initiation times (schedule) such that the information is maxi-
mized without exceeding a budget constraint.

METHODOLOGY

The algorithm used to solve the configuration and scheduling problem is
identical in spirit to the forward DP algorithm for the timing, sequencing,
and sizing of water resource projects developed by Becker and Yeh (1974).

The recursion formula is
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where [ = stage (sampling initiation time); f;,( ) = minimum cost function
at stage [; ¢, = total information available at /; x} = incremental information
resulting from sampling at ith location at /; C' = cost for sampling at ith
location; y; = indicator of whether ith location is active at [ (y; = 0 or 1);
D( ) = information demand function; and # = total experimental duration.

The state variable is the total information available at a given state /. The
total experimental duration, #, is divided into a number of stages and a de-
cision is made at the beginning of each stage. The decision variables are
sampling location and sampling initiation time. Since f; is a function of f_,,
the recursive equation has to be solved forward in time. The total cost is
assumed to be separable. Once a site is selected for sampling, it is no longer
considered for inclusion at a later stage. Only one site at a time is consid-
ered.

The formulation is a minimum-cost approach subject to an information
demand. The information demand function is constructed by computing the
minimum and maximum information available. The information demand
function is constructed as follows. The sum of information available at each
point is computed over all time, and the location with the smallest sum is
§elected to define the minimum-demand function. The running sum of the
information numbers at each time, Eq. 11, defines the minimum-information
demand at each stage. The maximum-information demand function is the
running sum of the information numbers at all possible locations at each
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stage. Thus the minimum design will be a single site that samples at all
times, and the maximum design will be points at all times. In the examples
a single-site, single-time sample is included for illustration of information
gain as budget is increased, this design is simply the best site at the last
possible sample time, and is chosen externally from the algorithm.

The functions are used to define an envelope whose upper and lower limits
represent the least and most acceptable amount of information. The DP al-
gorithm is run with the information demand parametrically. varied within this
envelope, from the lower to upper bound. The cost increases as information
demand is increased. The optimal policy is the most informative minimum-
cost policy that does not violate the budget. As an added benefit, a trade-
off curve is generated while obtaining the solution. Fig. 2 depicts the de-
mand envelope as described earlier.

The heuristic has some additional assumptions embedded in the algorithm.
To make the problem separable, when two sites are economically equal, the
site that gives the maximum remaining integrated information at that stage
is chosen as the preferred site for inclusion at that stage. Therefore, at any
stage, the future potential of the additional site is considered from that stage
onward.

The decision to install a site incurs a large fixed cost, the algorithm will
attempt to meet the information demand with as few sites as possible. Be-
cause of the fixed-cost nature of the problem just-in-time installation is avoided,
reflecting the reasonable economic objective of reducing average cost per
sample.

EaQuivALENCE OF MIN CosT AND MAX INFORMATION

Equivalency of minimizing the total cost and maximizing the information
is difficult to establish. If the problem could be moved into continuous space
and be posed as a linear program, then, in fact, the two approaches are each
other’s dual. In discrete space, duality is hard to establish mathematically,
and with the fixed-cost nature of the problem, it becomes harder still. Instead
a heuristic argument is given.

For any given budget, several designs can be specified, each design will
yield a different amount of information. Obviously, the design with the most
information is the desirable design. In the minimum-cost approach, several
information demand levels give designs for the same cost. Since the infor-
mation available is in discrete quantities there is an information level above
which the cost will change. At the levels where the changes occur, the min-
imum-cost solution is the maximum-information solution for that cost (or
budget). Using parametric programming over a reasonably fine discretization
of the information demand one can locate designs that are sufficiently dual
for the equivalence statement to be made.

APPLICATION

The methodology is applied to the following problem. Fig. 3 shows the
computation domain that is used to approximate the conceptual aquifer of
Fig. 1, with a thickness of 10 m. The experimental duration is assumed to
be 10 days (z), with sampling every day (stage). Water is injected and ex-
tracted during the entire experiment at a rate of 14 m’/day, but for the first
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half day a tracer mass (700 g) is added. The aquifer is assumed to be un-
contaminated prior to injection.

Table 1 shows the three parameter sets used in this application for which
optimal designs will be generated. We have chosen these three parameter
sets to demonstrate the proposed DP algorithm. In practice, prior information
is used to select the initial set of parameters upon which the first round of
experimental design is carried out. The data thus collected are used for up-
dating the parameter estimates by solving the inverse problem of parameter
identification. A second round of experimental design and data collection is
then performed. The concept of sequential design and its convergence prop-
erty has been reported by Hsu and Yeh (1989) and Nishikawa and Yeh (1989),
storage coefficient (S), effective porosity (e), longitudinal dispersivity (o),
transverse dispersivity (o), and the retardation factor (R). The second, third,
and fourth columns give the assumed values of each of the parameters in
the first column for three example applications.

TABLE 1. Parameter Sets for Example Application

Parameters Set 1 Set 2 Set 3
(1) (2) (3) 4)
T 30.0 30.0 30.0
S 0.1 0.1 0.1
e 0.5 0.5 0.5
o 0.1 0.5 0.1
ar 0.1 0.5 0.1
R 1.0 1.0 2.0
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FIG. 4. Concentration Profiles for Parameter Set 1
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FIG. 5. Concentration Profiles for Parameter Set 2

Figs. 4, 5, and 6 show the modeled concentrations at five sample times
for the three parameter sets along the line segment joining the injection and
extraction site. In each case, the peak of the concentration profile is near
the extraction well for the later sample times. Comparison of Figs. 4 and 5
shows that the peak concentrations for the earlier sample times occur in about
the same location, but the distribution in Fig. 5 is more spread out, as would
be expected with the higher dispersivity. In Fig. 6, the early sample-time
peak concentration is half as far from the source than in Fig. 4, as expected
for the retardation factor of 2.0 in Fig. 6 parameter set.

Figs. 7, 8, and 9 show the instantaneous information profiles for the pa-
rameter sets of columns two through four of Table 1. Each of these figures
exhibits an interesting characteristic in that the information profiles tend to
follow (peak after) the concentration profiles at a location, reflecting that
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contaminant (tracer) mass must arrive and pass by a point in sufficient quan-
tity to obtain information on the parameters controlling the contaminant mi-
gration.

Table 2 lists the optimal designs generated using the DP algorithm for the
first parameter set and various budget levels. The notation in this table is
(location: sample initiation time) for column three where location two is the
injection site and location 19 is the extraction site. Column one of Table 2
gives the budget available, while column two gives information returned.
The information has no units and differs with each parameter set, so com-
parisons between tables are not made. For the first parameter set, it can be
observed that the optimal locations are near the extraction site. These lo-
cations are at the same distance from the source that an advective front would
be expected to pass in half the experiment duration.

Table 3 lists the optimal designs for the second parameter set. The notation
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FIG. 7. Instantaneous Information for Parameter Profiles for Parameter Set 1
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and meaning of each column is the same for Table 2. In this example the
optimal locations are very near the source (in fact,at the source) with sam-
pling begun immediately. The larger dispersivity values in this example spread
the contaminant more quickly to where the quantity arriving and passing
points far from the source is insufficient to yield as much information as a
sampling point near the source. It is noted here that the parameters are as-
sumed time-invariant and scaling effect is not considered. The first row of
Table 3, where budget is sufficient for only a single sample, selects a lo-
cation that is characteristic of the previous example. An implication of these
results is, when dispersion is significant, near-source sampling will allways
be indicated because the mass is spread far enough from the source that the
concentration contrast over time becomes negligible and little information is
available.

Table 4 lists the optimal designs for the third parameter set where retar-
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FIG. 9. Instantaneous Information for Parameter Profiles for Parameter Set 3
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TABLE 2. Designs for Parameter Set 1

Budget Information Design (location: sampling start)
(1) (2) (3)
11 1.2 17:10
21 24.4 15:1
31 31.1 15:1, 17:10
41 49.7 14:2, 15:1
51 53.0 14:2, 15:1, 17:9
61 74.4 14:2, 15:1, 13:1
71 77.7 14:2, 15:1, 13:1, 17:9
81 99.0 14:2, 15:1, 13:1, 16:1
91 102.3 14:2, 15:1, 13:1, 16:1, 17:9

dation is 2.0. Again, sampling is indicated near the source, but, in this case,
retardation retains most of the information close to the source through the
experiment, as can be seen in the information profiles in Fig. 9 for th@s
parameter set. Near the source, in the early sample times the information is
high and does not decay very quickly. Ignoring the sampling point at the
source and looking at the other indicated points, doubling the retardation
results in reduction of the distance between the source and the optimal lo-
cations by a factor of two.

TABLE 3. Designs for Parameter Set 2

Budget Information Design (location:sampling start)
(1) 2 (3
11 1.2 15:10
21 21.5 2:1
31 22.7 2:1, 15:10
41 42.6 2:1, 6:1
51 43.8 2:1, 6:1, 15:10
61 63.6 2:1, 6:1, 4:1
71 64.8 2:1, 6:1, 4:1, 15:10
81 84.6 2:1,6:1,4:1, 7:1
91 85.8 2:1, 6:1, 4:1, 7:1, 15:10

TABLE 4. Designs for Parameter Set 3

Budget Information Design (location:sampling start)
(1) (2) )]
11 1.6 17:10
21 10.6 3:1
31 12.2 3:1, 17:10
41 21.1 3:1, 4:1
51 22.7 3:1, 4:1, 17:10
61 31.5 3:1, 4:1, 6:1
71 33.1 3:1, 4:1, 6:1, 17:10
81 41.7 3:1, 4:1, 6:1, 5:1
91 43.3 3:1, 4:1, 6:1, 5:1, 17:10

-

For all three parameter sets, the specified designs are reasonable and the
behavior of the information profiles can be explained in terms of mass lo-
cation and spreading. The primary implication is that when mass moves as
a slug with little spreading, knowledge of velocity is the most useful indi-
cator of where and when to sample, implying that the hydraulic parameters
of conductivity and storage coefficient are important. This observation is
reassuring since these parameters can be estimated independently by a pump-
ing test. In the case of retardation or quick spreading, the velocity impor-
tance is dominated by the quick loss of concentration contrast over time at
points far from the source. In general, a sample point near the source in a
practical case ensures some information will be available even if unknown
hydraulic structures cause the tracer to be missed entirely at points further
from the source.

CONCLUSION

A dynamic programming approach to the problem of configuring and
scheduling a ground-water tracer test has been illustrated. The test is used
to estimate model parameters for use in management studies. The objective
is to design an experiment to maximize the weighted trace of the estimates’
information matrix without exceeding a cost constraint. The methodology
allows that it may not be cost-effective to sample at a site before sufficient
mass has arrived. Three examples were provided to illustrate the feasibility
of the method. In each example, optimal designs that were intuitively rea-
sonable were generated. The method was illustrated for small-scale tests,
but would be applicable to regional-sized problems with little modification.
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AprpPENDIX Il. NOTATION

The following symbols are used in this paper:

b = aquifer thickness;
c = concentration;
¢' = sampling cost;
C(x,r) = sampling and analysis cost;
C(x) = installation cost;
Cost (x,1) = cost;
D.., D,, D,, ... = components of hydrodynamic dispersion tensor;
* = molecular diffusivity;
D() = demand function;
dQ) = boundary of flow region;
E() = expectation;
e = effective porosity;
f() = minimum cost function at stage i
h = piezometric head;
I( ) = information matrix;
inf (x,) = information;
i = stage; index;
J = Jacobian;
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hydraulic conductivity;
source/sink term;

normal direction;

total information available at i;
retardation factor;

storage coefficient, index set;
transmissivity;

experimental duration;

tracer of matrix;

average fluid velocity in the x and y direction;
variance, covariance;
parameter weight;

incremental information;
indicator varible;

information at ith location, /th time;
longitudinal dispersivity;
transverse dispersivity;

normal derivative;

parameter vector;

variance; and

flow region.
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