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SAMPLING NETWORK DESIGN FOR TRANSPORT
PARAMETER IDENTIFICATION

By Theodore G. Cleveland,' Associate Member, ASCE,
and William W-G. Yeh,” Member, ASCE

ABSTRACT: An optimal experimental design algorithm is developed to facilitate
the planning and the optimal configuration and scheduling of a ground-water-tracer
test whose data are to be used to estimate model parameters. A maximal infor-
mation criterion is used to select among competing designs. The proposed criterion
is equivalent to a weighted sum of squared sensitivities, employing the observation
that parameters are most accurately estimated at points with high sensitivity to the
parameter but that the relative magnitudes of sensitivities to different parameters
are different. The fundamental advantage of this criterion is that it is comparatively
simpie. The influence-coefficient method is used to compute the sensitivity coef-
ficient. A zero-one integer hueristic is used to solve a simplified example for ex-
periment configurations under a given experimental duration. The design considers
the installation cost, which is a function of location and depth of the observation
well and of the samples themselves. The resulting designs are intuitively reason-
able. It was found that a dramatic increase in information can be obtained with an
experimental budget increase in a heterogeneous example case.

INTRODUCTION

Awareness of environmental quality and the desire to control pollution
have resulted in the need to predict the movement of ground water and pol-
lutants carried by the water. Mathematical models are used to predict the
response of a ground-water system to various management policies. Esti-
mation of the parameters used in these models is a critical step in their op-
eration, and ultimately in the management decisions that are made.

Aquifer-response prediction is quite complex. The physical structure is
unobservable. Since the structure cannot be observed directly, it must be
inferred by the response at a few observation points. The observations are
used to estimate parameters imbedded in the governing equations that de-
scribe the behavior of the system. This is the inverse problem of parameter
identification, which has been studied by many authors. A state-of-the-art
review of inverse procedures is given by Yeh (1986).

The inverse procedure is applied after a monitoring network has been in-
stalled and a sampling schedule proposed. The purpose of this paper is to
examine a technique to configure a monitoring network whose data will be
used to estimate parameters for a ground-water-contamination model.

LiTERATURE REVIEW

The basic experimental design problem consists of determining the ob-
servation locations and sampling times so that the data obtained yield the
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most information for estimating the parameters for a given cost. A design
algorithm considers the trade-off between the economy of single site sam-
pling with many samples versus the marginal decrease in information at a
site as an experiment proceeds. Experimental design procedures developed
in the field of statistics are used in medicine, automatic contro!, physics,
and other areas, and can be applied to ground-water systems as well.

St. John and Draper (1979) reviewed the D-optimal design criterion and
presented algorithms for constructing such designs. A D-optimal design is
a design that satisfies all constraints and minimizes the determinant of the
estimates’ covariance matrix. Qureshi et al. (1980) applied D-optimality to
identify locations of sensors for two problems: a heat-diffusion process and
vibrating string. Periodic boundary conditions were used to eliminate com-
putational difficulties.

Steinberg and Hunter (1984) reviewed the history of experimental design
schemes and compiled the more successful schemes. Among these, A-op-
timal and D-optimal designs are discussed. An A-optimal design satisfies all
constraints as well as minimizing the trace of the estimated parameters’ co-
variance matrix.

It was not until recently that the problem of experimental design in ground
water received its attention. Yeh and Sun (1984) developed an extended
identifiability criterion, called the 3-identifiability, which can be used for the
design of a pumping test. A d-identifiable pumping test is an experiment that
produces sufficient data to guarantee that the parameter estimates of the sim-
ulation model yield predictions that are sufficiently accurate for the overall
management objective. McCarthy and Yeh (1989) used this approach to ob-
tain minimum-cost pumping tests for a hypothetical aquifer where the un-
certain parameter is transmissivity.

Carrera et al. (1984) proposed a scheme to locate observation sites for
sampling of fluoride concentrations in an aquifer by minimizing estimation
variance of the average fluoride concentrations.

Hsu and Yeh (1989) formulated an experimental design problem of a ground-
water flow system. The objective was to minimize test cost subject to pa-
rameter-reliability constraints and some institutional constraints. They used
the A-optimal reliability criterion to solve several parameter-identification
problems in ground-water hydraulics, where the unknown parameter is trans-
missivity.

Nishikawa and Yeh (1989) used D-optimality as a reliability criterion to
generate optimal pumping tests for a hypothetical aquifer where the uncertain
parameter is transmissivity. The objective was to minimize test cost subject
to parameter-reliability constraints.

In mass transport, the statistical implications for the transport parameters’
identification were studied by Wagner and Gorelick (1987). They found that
parameters are more reliably estimated if sampling is distributed in both space
and time. They did not study the effect of structural inhomogeneity, but
stated such studies might be useful.

Knopman and Voss (1987) studied the behavior of sensitivities in one-
dimensional solute-transport equations and the implications for parameter es-
timation and sampling design. They found that parameters are most accu-
rately estimated at points with high sensitivity to the parameter, but designs
that minimize the variance of one parameter may not simultaneously mini-
mize the variance of others. They reported that maximum sensitivity to ve-
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locity is a function of spatial location and hence experiment duration, while
maximum sensitivity to dispersion is a function of sample frequency. They
studied the effect of various experimental designs on the determinant of the
estimated parameter’s covariance matrix and found that the design with the
smi'lllcst determinant gave the most reliable estimates with regard to estimate
variance.

The imponance of experimental design in connection with the planning
of monitoring networks has been recognized for some time. Recent papers
include Kaunas and Haimes (1985), Strecker et al. (1985), Meyer and Brill
(1988), Knopman and Voss (1988), and Loaiciga (1989).

MoDEL AQUIFER

The experimental design algorithm is applied to a model aquifer that de-
scribes the features of the aquifer shown in Fig. 1. The aquifer is confined,
piecewise homogeneous, and isotropic. The injection location and extraction
location are assumed known. The experimental design problem seeks to de-
termine the placement of multilevel sampling wells and the sampling fre-
quency. It is also assumed that flow field can be approximated by a two-
dimensional model.
lg’;‘:o—dimensional confined flow in porous media is described by Bear (1972,

).

oH 9 oH a oH
S—=—|Ka—)+—|K,— ) +M.............. H
a  ox ax dy dy

subject to the following initial and boundary conditions:

Hx,y,0) =known (x,y) € Q.......ccovvrnnnnn. (2a)
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FIG. 1. Conceptual Aquifer
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Ho,y,) =known (x,)) €Ed. ... (2b)
a d. oH\ d

(Ka i1) N + (KW —) 2 known (x5, )€ dQ; ........ ... (20)
dx/ dn T dy/ on

where H = hydraulic head (L); K,, = hydraulic conductivity (x-plane, x-
direction, L/T); K,, = hydraulic conductivity (y-plane, y-direction, L/T); §
= storage coefficient; M = net injection-extraction rate (L/T); {2 = flow
region; dQ) = boundary of flow region (dQ, U dQ, = df}); and d/on =
normal derivative to boundary.

The governing equation of the solute-transport process used in the present
study is given by Bear (1972, 1979)

d oC aC a aC aC
R (5,2 ) 2 (0, )

a  ax\ Tax Tay) ey \ Tox ¥ 9y
—v,a—c——vyfﬂu ........................................... A3)
ax Iy
subject to the following initial and boundary conditions:
Cx,y,0) =known (x,y)) € ....... ittt (4a)
Cx,y,)=known (x,y) Ed)).......cooiiiiiiiiiiiiiiii i (4b)

(C V., D.aC D,,ac) ax N (C v,_g_,_,f_p,,g_g)g
R R ox R dy/ on R R ox R dy
=known (x,y) €Edd; . ... i e (4c)

where C = mass of solute per volume of medium (M/LY); D, D,, ... =
components of hydrodynamic dispersion tensor; R = retardation factor; V,
= average fluid velocity in x-direction (L/T); V, = average fluid velocity
in y-direction (L/T); M = net mass injection-extraction rate (M/T); £} =
flow region; and d{} = boundary of flow region (d}, U d), = d{}).

Eq. 3 reflects certain implicit assumptions. First, there is no generation
or decay of the solute. Also, adsorption is described by a linear equilibrium
isotherm, hence the use of a retardation factor (Bear and Verruijt (1987).
Included are terms for sources and sinks. Imbedded in all terms is the po-
rosity, which permits the transformation of inass per fluid volume and mass
per medium volume. The two-dimensional approximation of the flow field
ignores head and concentration variations in the z-direction, which is hori-
zontal in this case. This approximation is appropriate for a line of close-
ly spaced parallel injection and extraction wells or for two parallel ditches.
For a single pair of injection and extraction wells, radial flow would be sig-
nificant near them and the formulation would be different. However, this
two-dimensional approximation is adopted for demonstrating the proposed
sampling network design. The hydrodynamic-dispersion coefficients for
an isotropic porous medium are expressed by Bear (1972, 1979):

2

v

D, = (o, — ap) -‘7 + ooV + D e 3
Vv,

D, = (o, — ay) V. 6)
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Dyy = (aL - aT) Vy + aTV + D (7)

where V = (VI + V)% «, = longitudinal dispersivity; a; = transverse
dispersivity; and D* = molecular diffusivity. The distribution of average
fluid velocities is computed using Darcy’s Law, written

.. K. oH ®
woax T
K, oH

S e 9
n dy

where n = average porosity of the porous medium. In this study, molecular
diffusion is ignored.

The transport equation is coupled to the flow equation through the average
fluid velocities, this approximation is suitable for regional, shallow flow re-
gime (two dimensional). If the solute significantly alters the density of the
solvent (water) as a function of concentration, the flow model must be al-
tered; the two equations coupled and solved simuitaneously with the aid of
equation of state. For simplicity it is assumed that this is not the case, and
the flow equation can be solved independently.

Various finite difference, finite element, and other methods have been
proposed for the numerical solution of these partial-differential equations.
For simplicity, an explicit finite difference scheme is employed to solve these
equations. An upwind formulation is used for the velocity terms of the trans-
port equation to alleviate overshoot and undershoot associated with the nu-
merical solution when advection dominates. An upwind formulation models
an advective velocity front by averaging velocities at the node of interest
and the node directly upward (or upgradient in this paper).

Solutions to Eqs. 1 and 3 were obtained using a forward Euler scheme.
Centered-difference approximations were used for the spatial-discretization
equation (Eq. 1). The stability criterion for the flow model is the smaller of

At = -é K. Ax? (10a)
or

1 2
Ar = 5 K, Ay (10b)

where A, = characteristic length of discretized domain in x-direction; and
A, = characteristic length of discretized domain in y-direction.

In Eq. 3, the space discretization of the second-order partials is the same,
leading to an analogous stability criterion, with D,,, D,, replacing the con-
ductivities in Eq. 10. The first-order partials are approximated using forward
or backward differences, depending on the local velocity direction (upwind
formulation) when the local Peclet number exceeds 2.0. The Peclet P, num-
ber in the x-direction is computed from

_ Vdax
D|
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FIG. 2. Computational Domain

where |D| = some norm of the dispersion tensor. In this study, |D| =
(D% + D%)"*.When velocity is significant, an additional stability criterion
must be met (the Courant criterion):

Analogously, the Peclet number and Courant criteria are computed in the y-
direction, and the smallest Ar and appropriate first-order partial approxi-
mations are used.

For this study, stability was determined by trial and error, Af being ad-
justed until the scheme remained stable for the duration of the simulation.
Fig. 2 shows the finite difference approximation grid used to simulate the
aquifer in Fig. 1. The space discretization used is Ax = Ay = 0.5 m.

The optimal design selection is based on an information measure con-
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structed from model sensitivities. Model sensitivities are the partial deriva-
tive of the state variable with respect to each of the model parameters. The
method of computing sensitivities used here is the influence coefficient method
described by Yeh (1986).

These sensitivities are then assembled into the Jacobian matrix, for in-
stance, suppose a two-point design is used (i.e. {(x,,t,); (x,5)}), then the
Jacobian would have the form

=[(aC/80.) (1,0,,0) (3C/36) (x1,1,8) ... (3C/38,) (x.,r.,e)]
(3C/80;)  (x2,4,,0) (3C/30)) (x2,1,,0) ... (3C/38,) (x3,1,,0)

where @ = parameter vector, which contains (0,, 0, ..., 6,).

METHODOLOGY AND ASSUMPTIONS

The optimal design algorithm uses the numerical simulation model to lo-
cate as well as schedule the multilevel sampling sites. The performance cri-
terion used to evaluate a particular design is based on the estimate’s infor-
mation matrix, assuming a least-squares-parameter-identification scheme is
used. The approach is different from others [e.g., Hsu and Yeh (1989)] in
that the selection criterion is used as the evaluator rather than a reliability
constraint. The performance measure is constructed from the sensitivity in-
formation. For an additive-error model

Copserved = Cmoaet® + BITOr. . Lo o i i i (14)
where

EEIror) = O ...t it i et e s e e (15)
VI EITOT) = 2 ittt e e e e e e e 16)

in which £ = common covariance matrix of the error. The symbols E and
V denote mathematical expectation and variance-covariance operator. As-
suming a least-squares-parameter-identification scheme is used, the linear
approximation to the estimates’ covariance matrix is (Yeh and Yoon 1981):

VO = MM an
where
M o= BT Y (18)

In the special case where the errors are not correlated and have equal vari-
ance

where @’ = variance; and I = identity matrix. Then, the approximation of
the estimate’s covariance matrix is

VO = 020 ) e (20)

The information matrix for the special case in Eq. 17 is
v =JD @
g
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To ensure small variance of the estimates, it is desired that the information
matrix be large in some sense. Since different designs only change the Ja-
cobian, the 1/0? term is ignored. The proposed measure is the trace of the
weighted information matrix. This is equivalent to a weighted sum of squared
sensitivities, employing the observation that parameters are most accurately
estimated at points with high sensitivity to the parameter but that the relative
magnitudes of sensitivities to different parameters are different. The fun-
damental advantage of this criterion over that of D- or A-optimality is that
it is computationally simple. The J'J matrix never has to be completely
constructed or inverted. The information matrix is evaluated at the prior es-
timates of parameters, which are assumed to be available before performing
the experiments.

The method of choosing weights is to compute the sensitivities for each
parameter at each time. These sensitivities are then integrated with respect
to time. These “aggregate” sensitivities reflect the sensitivity of a parameter
over the entire computation domain. The weights are factors that are required
to make each aggregate sensitivity equal to unity. This way, the effect of
different order of magnitude sensitivities dominating the solution is reduced.
The criterion (the trace of the weighted information matrix, in which 10 =
J'J) at some point in space and time is written

k aC 2
L= ol 3, W)= w,(—"’) .................................. 22)
PN

where /;; = information at ith location /th time; J;; = Jacobian matrix at ith
location /th time; w; = weight on jth parameter; W = diagonal matrix of
weights with determinant one; and £ = number of parameters. Allowing W
to be any nonnegative matrix generates different criteria, some of which may
include cross sensitivities. Here, only diagonal matrices are used, which is
a special class of more general criteria discussed by Sacks and Ylvisaker
(1968).

Using this measure of information and some assumptions about costs, the
optimization model is a finite-dimension integer-programming problem. It is
assumed that the overall experiment duration is known. It is also assumed
(for computational simplicity) that once sampling has begun at a site, it con-
tinues until the end of the experiment. With these assumptions, the objective
function is constructed as the sum. of time-integrated information numbers
at cach site. For instance, if site (x;,y;) is considered, and sampling is begun
at time () and the experiment ends at time (fy;), then the total information
available at that site is:

NT
Total Information (x;,3) = D J(xi,Yis01,8) « e (23)
i=J

where NT = number of possible sampling times; and /(x;, Yi,4,0) = unit
information number at site (x;,y;) and time () for the parameter set 0.

It is assumed that the design parameters concerning the installation, de-
velopment, and operation of the injection and extraction system are known
and money has been budgeted. The remaining discretionary budget is allo-
cated to sample-site installation, sample collection, and analysis. Installation
cost is a function of location and depth as well as the cost of the sampler
(pump) itself. In a manner analogous to the compution of total information,
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the cost at a site is the time-integrated cost of the installation and the con-
sequent sampling costs.

NT
Cnydy = COLYD + 3 COMYrt) oo (24)

I=j

where C(x;,y,) = installation cost at site (xi,y.); and C(x;,y,, 1) = sample cost
at site (x;,y,) time ¢,. These costs are computed as a combined function C(x,, AN
which is the cost of installation plus sample collection from time J until NT.

A zero-one indicator variable is used to identify which sites are selected.
A value of one means a particular site is chosen. The zero-one variable is
double-subscripted. The first subscript is location, the second is sample-ini-
tiation time. For instance, Z;7 = 1 means site 2 (with locations x,, y,) with
sampling starting at time (t,) is indicated as a selected point.

The optimal design problem can be written

wr NT

max ) Z,, [ l(xi,yi,tj,ﬂ)] +.o 4tz M[ > l(x,,yi,t,,O)] (25)
% eS j=1 . J=NT

subject to

2 2y €Y+ + Ziaré(x, y)wr < budget (26a)

Zat ot aar = LVEES (26b)

Zwr =0 or L, VieS. .. (26¢)

where n, = number of x-locations; n, = number of y-locations; § = (1, 2,
.«» N n); and I(x;,y;,£,08) = unit information at (x;,¥:) and time ¢.

The solution of this multidimensional 0-1 integer-programming problem
dpﬁnes the optimal configuration and schedule for the sampling-network de-
sign.

The multidimensional 0-1 integer-programming problem described in Eqgs.
25 and 26 is approximated by only considering the first column of the op-
timization problem. That sampling is started at time 1 and continued throughout
the experiment. This leads to the following unidimensional 0-1 integer-pro-
gramming problem:

NT
max 2 zi,[ z l(xi,yi,tj,)] ....................................... 27)

ieS j=1

subject to

z Zyclxpy i Sbudget . ... (28a)
ieS

20 =0 or L, Vs oo (28b)

This problem is solved using a polynomial in a time-approximation scheme
.described in detail by Papdimitriov and Steiglitz (1982). Using this approx-
imation ignores sample initiation time, thus it is a configuration algorithm
based on time-integrated information at each location. It is felt that this ap-
proximation reasonably describes a field study where to ensure nothing is
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missed everything is turned on sampling is performed without regard to in-
coming information.

APPLICATION

Example 1

An example of the methodology is presented. The aquifer of Fig. 1 is first
assumed homogeneous, i.c., zones | and 2 have the same properties. The
installation cost of any sampling site is 10.0 units, while sampling and anal-
ysis is 1.0 units. Fig. 2 shows the computational grid used as well as the
relative locations of the injection and extraction sites. The distance between
the two sites is 5 m. A uniform discretization of Ax = Ay = 0.5 m is used
in the numerical model. In Fig. 2, and the rest of the figures, distances in
the x- and y-directions are represented in terms of the number of increments
in Ax and Ay from the origin. The approximate hydraulic travel time is 2.75
days at the average hydraulic velocity at steady state. The mass is injected
for 0.40 days; sampling is at every 0.40 days for a total of 4.0 days. The
injection and extraction rates are 0.83 gpm and 2.5 gpm, respectively, while
the injected concentration is 1 mg/kg. Table 1 shows the prior estimates of
the model parameters. It is important to note at this point that the results of
experimental design are predicted on the prior estimates. Column 1 of Table
1 lists the parameters of interest, Column 2 gives the values assumed in zone
1 as shown in Fig. 2, and column 3 gives the values assumed in zone 2. In
this example, the values for each parameter in each zone are the same.

Fig. 3 shows the optimal design for three budget levels. The notation of
Fig. 3 is the following: The vertical line labelled a represents design A in
column 2 of Table 2. This line represents sampling at six locations whose
x-coordinate is fixed. The actual locations are indicated by dots on the graph.
The vertical lines labelled & (which include line a, for a total of 12 locations)
represent design B in column 2 of Table 2. The line ¢ (along with lines a
and b) represents design C in column 2 of Table 2, for a total of 18 locations.
Table 2 lists the information available with each design at each budget level.
As budget is increased (column 1, Table 2), the designs change and the
information obtained (column 3) changes. The last column (column 4), shows
the incremental increase in information for each successive budget increase.
The location of the single point (design A) is exactly at the location where
one would expect the peak concentration to have arrived at one-half the ex-
periment duration time.

TABLE 1. Parameters for Example 1

Parameter Value in zone 1 Value in zone 2

(1) (2 (3)
K. 3.0 3.0
K,, 3.0 3.0
S 0.1 0.1
n 0.5 0.5
o, 0.1 0.1
ar 0.1 0.1
R 1.0 1.0
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FIG. 3. Optimal Designs for Example 1

Fig. 4 shows concentration profiles in the cross section A-A aligned with
the axis of symmetry between the injection and extraction points (dominant
streamline). Fig. 5 shows the information measure at the same three times.
Observe that the information moves in space with time as well as decays
over time.

TABLE 2. Tradeoff Table for Example 1

Budget Design Information A Information
(1) (2 3) 4
22.0 A 12.18 —_
44.0 B 24.41 12.23
66.0 C 36.42 12.01
774
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FIG. 4. Concentration Profiles through Section A-A

From Table 2, it is observed that as budget increases linearly the infor-
mation increase is less than linear; this reinforces the observation by Strecker
et al. (1985) that the incremental improvement of a sampling network as
observations are added diminishes over time.

An observation that can be made from the results of this design algorithm
are that the optimal single point is the location where the hydraulic gradient
would be expected to carry the mass in half the experiment duration. An
explanation of this is that maximum sensitivities to different parameters oc-
cur at different times during the passage of the concentration pulse, but sam-
pling at the one-half distance allows sampling to occur before, during, and
after a peak pulse has passed, thereby allowing for more information to be

gained for all parameters.

Example 2
The experimental design algorithm is repeated assuming the aquifer of
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TABLE 3. Parameters for Example 2

FiG. 5.

Location

Information Measure through Section A-A
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Parameter Value in Zone 1 Value in Zone 2
(1) (2) (3)
K. 1.5 3.0
K, 1.5 3.0
S 0.1 0.1
n 0.5 0.5
'S 0.1 0.1
ar 0.1 0.1
R 1.0 1.0
0.6
0.5 4
Injection Extraction
. y
b ——8— time=.5day
s
E —— time=2.0day
o
c
8 —a— time=4.0day
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TABLE 4. Tradeoff Table for Example 2

Budget Design Information A Information
(1) 0] @) )
22.0 A 21.14 e
44.0 B 21.87 0.73
66.0 C 43.01 21.14
88.0 D 43.03 0.02

Fig. 1 is piecewise inhomogeneous with a hydraulic conductivity contrast of
2:1. Table 3 shows the model parameters (prior estimates) used. Column 1
of Table 3 lists the parameters of interest, column 2 gives the. values assumed
in zone 1 of Fig. 2, and column 3 gives the values assumed in zone 2. Table
4 lists the information available with each budget level in a fashion analo-
gous to Table 2. . )

Fig. 6 shows the four optimal designs. The vertical line labelled a cor-
responds to design A in Table 4, with a total of six locations. The two }mes
labelled B correspond to design B in Table 4, for a total of six locations.

32
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d
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/
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0

0 5 10 15 20 25 30 35 40
X

FIG. 6. Optimal Designs for Example 2 (Inhomogeneous)
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In this example, we use the multilevel behavior of the design algorithm where
the locations are now different for each zone. The lines labelled b and the
one labelled a (or two, one in each zone) taken together are design C in
Table 4, with a total of 12 locations. In design D, the lines are labelled b
and d, with a total of 18 locations.

In this example, the tradeoff between budget and information is more pro-
nounced. Using four times the budget, from 22.0 to 88.0, only gives a little
more than twice the information. Obviously, if suboptimal design points are
chosen this would not be the case. An important implication is that a well-
selected point (given that the governing parameters are somewhat known)
gives a lot of information. Design C is probably the most informative per
unit of budget that the two zones are significantly different.

To summarize the results of each example, first, a useful amount of in-
formation is available at the half-duration location, although in the hetero-
geneous case multilevel sampling gives a dramatic information increase.
Second, both examples illustrate the diminishing return in terms of infor-
mation with increased experimental budget. More examples can be found in
Cleveland (1989).

MONTE CARLO ANALYSIS

The two examples presented assume that prior estimates of the parameters
are available. It is safe to say that some estimates of the parameters can be
made prior to performing an experiment (one can always guess). A sequen-
tial design approach can be used to update estimates. The fundamental dif-
ficulty is that the parameters are required in order to identify an optimal
design to obtain the data to estimate them, but they are unknown beforehand.
In practice, initial estimates of parameters are determined from prior infor-
mation. Based upon the initial estimates, experimental design is carried out
and data collected. The inverse problem of parameter identification is solved
to update parameter estimates and the design of the experiment is repeated.
The concept of sequential design and its convergence property are reported
by Hsu and Yeh (1989) and Nishikawa and Yeh (1989). In this study, se-
quential design is not performed; however, the range of parameters for which
a design remains optimal is explored.

Two approaches that are used are to design an experiment that performs
well in the average sense or to design an experiment that performs well in
the min-max sense. D-optimality is a common criterion for these approaches,
although in general the approaches generate different designs (Walter and
Pronzato 1987). Although these approaches identify robust designs, they are
not independent of the underlying parameters that are unknown and thus
dependent on the estimates (which are used to approximate the covariance
matrix). To gain insight in this respect, the present study uses a Monte Carlo
approach to identify parameter ranges for which a design remains optimal.
Since it has been demonstrated that the parameters of interest change the
objective surface in a complex fashion, this trial-and-error approach should
yield some insight that can be used to improve the robustness of a design.

The approach is the following: Parameters are chosen from a uniform dis-
tribution with known upper and lower bounds. Several thousand realizations
are performed for some budget level, and the frequency of selected points
is saved. With parameters at some setting and small ranges, a unique design
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TABLE 5. Parameter Ranges

Parameter Zone 1 Zone 2
(1) (2 (3)
K. 1.0-2.0 2.5-3.5
K, 1.0-2.0 2.5-3.5
s 0.9-1.1 0.9-1.1
o 0.25-0.75 0.25-0.75
ar 0.25-0.75 0.25-0.75
R 0.75-1.25 0.75-1.25

should appear with frequency 1.0. The ranges are adjusted until this fre-
quency changes. This is then said to be the optimal design for all parameters
in the stated ranges. Table S lists the parameter ranges used. Table 6 lists
the results of the Monte Carlo simulation. It is observed that the stable de-
signs are fairly robust for the hydraulic conductivity and retardation, but very
sensitive to storage coefficient and dispersivities. It is noted here that the
storage coefficients used are abnormally large (compared to observed values
for real aquifers). This has the effect of making the model describe transient
behavior longer than would be encountered using more realistic parameters.

For parameters outside these ranges the marginal decrease in information
by switching from the optimal design to an average design can be approx-
imated by comparing the information in the average design with the infor-
mation in the optimal design. On the average, the information loss is dra-
matic, about 70%. This is alarming in that a one-shot approach will have
serious difficulties if the prior information is poor.

The marginal decrease in information is calculated by taking the difference
in information (in a 32 point design) between the optimal design (for the
out-of-range parameter set) and the average design. The difference is divided
by the information in the optimal design to compute the proportion that the
difference represents. The implication of such a dramatic difference is that
the sequential design may be doomed from the start if a design is not robust
enough for the prior information.

For instance, suppose the prior estimate is terrible with respect to the true
parameter. This estimate is used to specify a design and an experiment is
performed. Since the estimate is terrible, the design will surely be subop-
timal. Suppose first the suboptimal design is adequate. The estimate will be
updated, and a new design specified. On the other hand, suppose the in-
formation in the suboptimal design is inadequate so that the update is still

TABLE 6. Parameter Ranges for Stable Design

Parameter Zone 1 Zone 2
(1) (2) (3)
K. 1.26-1.98 2.57-3.45
K., 1.08-1.93 2.55-3.37
s 0.9-1.0 0.9-1.0
o 0.27-0.55 0.38-0.69
ar 0.44-0.49 0.44-0.72
R 0.75-1.15 0.78-1.24
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in the “robust” range of the initial suboptimal design. If this"is the case,
then the design will not change. However, the design won’t change if it is
optimal in the first place, either.

In the mathematical abstraction of the system, this should not occur in
high-dispersion cases, since mass (albeit very small) will move instanta-
neously throughout the system. This is explained because the model is a
parabolic partial-differential equation. In a low-dispersion case, when the
equation becomes hyperbolic the mass will have finite velocities, and there
are locations in the model where mass never appears. These locations will
change as the parameters are changed. If the prior estimate causes the al-
gorithm to choose a design that is a zero-information design for the true
parameters, then the update will be worthless. But there is no way to know
this beforehand, and although a zero-information design is useful in some
sense (it tells where not to sample) it makes the next design difficult to
specify. Clearly, an important avenue for more study is how to ensure that
the first design gives some information, even with terrible prior information.

In the physical system, this behavior has been observed. Often in the hy-
draulics of wells, a radius of influence is used beyond which a particular
well has no apparent effect on the system (at a particular pumping rate). If
parameters concerning that well are to be estimated, clearly a design must
take samples somewhere within the radius of influence, even though the
mathematical abstraction may indicate information available beyond the
physical radius of influence.

CONCLUSIONS

A maximal information criterion was applied to an experimental design
problem of ground-water hydrology. The goal was to identify reasonable
sampling configurations under a given experimental duration for obtaining
data to estimate model parameters. The criterion has computational advan-
tages over criteria, and identifies reasonable designs.

Practical implications illustrated by the method are that a desirable sam-
pling location is at the one-half experiment duration. Also, the marginal
increase in information as experimental budget is increased is not linear, that
is, doubling the budget does not double the information.

Finally, tradeoffs must be evaluated to determine an appropriate budget,
as illustrated by the last example. The smallest budget may give the most
information per unit of budget, but if it is known that the sample domain
contains heterogenities, a budget increase may give a dramatic increase in
information.

A future direction of this research is to pursue the joint configuration and
scheduling problem (i.e. the full-optimization model). Since in some sense
the joint approach is a capacitated-expansion problem a dynamic program-
ming approach like that of Becker and Yeh (1974) may be promising. The
alternative is to solve the multidimensional-knapsack problem directly, which
is computationally difficult as the design space grows larger.

It would also be desirable to compare results using a field test of D-op-
timal versus A-optimal versus the approach described here.
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APPENDIX. NOTATION

The following symbols are used in this paper:

. C = concentration;
_C(x,y) = installation cost;
Q(x, y,t) = sample cost;
C(x;,y); = combined cost;
D,‘,,,D,,_V,Dy“¥ = hydrodynamic dispersion tensor;
D* = molecular diffusivity;
d(} = boundary of flow region;
E() = expectation;
H = hydraulic head;
I( ) = information matrix;
I(x;,y;,£,86) = total information at X, Vir 8, 0
J = Jacobian matrix;
K.,K,, = hydraulic conductivity;
M = injection-extraction rate;
n = average porosity;
n, = number of x-locations;
n, = number of y-locations;
P, = Peclet number;
R = retardation factor;
§ = storage coefficient;
S = index set;
V..V, = average fluid velocity;
V() = variance, covariance;
W = weight matrix;
W, = parameter weight;
Z,, = information number at i, /; binary indicator variabie;
2(x,y,t,8) = unit information number:;

a, = longitudinal dispersivity;
ay = transverse dispersivity;
A, time discretization;
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space discretization x-direction;
space discretization y-direction,
normal derivative;

parameter vector,

variance; and

flow region.
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