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ABSTRACT

Compactability of particulate structures is a key factor in the behavior of thickeners, filters, centrifuges, and
presses. Aggregates in slurries are deposited at a cake or sediment surface under null stress. As more
deposits cover the surface, developing stresses compact the particulate bed. Principal sources of stress
originate from (1) sediment weight in thickening, (2) frictional drag in filters, (3) centrifugal forces in
centrifuges, and (4) surface forces in belts or diaphragms. Only frictional forces in filters are considered in
the present work.

Stress applied to cakes results in a decrease in porosity and an increase in resistance to flow (decrease in
permeability). The rate at which the permeability decreases with pressure has a profound effect on cake
behavior. For highly compactable beds of biosolids or fragile flocs, doubling of the pressure may result in
more than a doubling of the local resistance. Consequently, at applied pressures frequently below one
atmosphere, increasing pressure neither increases the flow rate nor decreases the average cake porosity.

For highly compactable biosolids, theoretical equations show that (1) filtrate volume vs. # is independent of
pressure drop across the cake, Ap,, (2) the average specific resistance is proportional to 4p., and (3) the
average volume fraction of solids is independent of Ap..

Copyright © 1996 IAWQ. Published by Elsevier Science Ltd.
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INTRODUCTION

Solid/liquid separations begin with mixtures of liquids and particles. Depending on original chemical
formation, particles may range from hard, dense crystals to soft cellular materials. After suspensions are
formed, repulsive and attractive forces play important roles in determining the structures developed by
interacting particles. Attractive interparticle forces produce aggregates which may contain anywhere from a
few to thousands of particles. Properties of the aggregates (or flocs) and their response to stress account for
compactibility and flow resistance.
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Particulate structures encountered in sediments vary enormously in resistance to compressive forces. The
nature of the chosen pretreatment agents and the mechanical mixing process determine the properties of
cakes formed during deposition in thickeners, filters, and centrifuges. Generally, increasing sedimentation
velocity, producting permeable cakes, and decreasing the liquid content of the wet cake are objectives of
pretreatment operations.

Aggregates are deposited at a growing cake surface under a null stress. The cake structure is a function of
the internal porosity and aggregate shape. As each successive surface layer is covered by new deposits, it is
compacted by developing stresses from sediment weight in gravity thickeners, centrifugal forces in
centrifuges, drag forces in filters, and direct mechanical forces in belts, pistons, and diaphragms.

When compressive stress is applied to a matrix of particles, the solidosity, & (volume fraction of solids)
decreases and the permeability, K, increases. Several different types of response to compressive stress
(effective pressure), p;, are shown in Fig. 1 below.
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Figure 1. Behavior of porous cakes under pressure Figure 2. Permeability vs. effective pressure

Sources of data for Figures | and 2: Latex, Grace (1953); Eindhoven-Mierlo Sludge, 15% FeCLs, 20% lime, dry basis, LaHeij
(1994); attapulgite, Yeh (1985); Hong Kong Pink Kaolin, Shirato (1960).

Permeabilities of a number of materials are shown in Fig. 2 on a logarithmic plot as a function of the effective
pressure p,. There is a direct correlation between the degree of cake compaction shown in Fig. 1 and the
rate of decrease in permeability shown in Fig. 2. The solidosity of the fragile latex flocs increases rapidly up
to a pressure of approximately 75-85 kPa and then undergoes a more gradual increase at higher pressures.
This behavior is reflected in the 100 fold decrease of the permeability in the pressure range up to 75-85 kPa.
This supercompactability is followed by a region of moderate compactibility where the compressed latex
flocs mimic the behavior of Hong Kong Pink Kaolin. With a slope of -0.45 for the log K vs. log p; of Pink
Kaolin in Fig. 2, doubling the pressure at a given location in a filter or centrifuge cake would reduce the
permeability to 68% of its former value. This reduction in K is considerably less than would be experienced
by the latex, attapulgite, and Endhoven-Mierlo sludge (60% domestic, 40% industrial, 80% organic, 20%
inorganic, average dry solids density = 1200-1300 kg/m’ treated with 15% FeCl; and 10% lime on a dry
basis). The slopes of the plots of log K vs. log p; for both latex and Eindhoven-Mierlo (EM) sludge indicate
similar supercompactability, but the permeability of the EM sludge is much lower than the latex at pressures
above 100 kPa.

EMPIRICAL CONSTITUTIVE EQUATIONS
The development of empirical models for representing porosity, solidosity (volume fraction of solids),

specific flow resistance, and permeability as functions of effective pressure has depended on power law
approximations. Although the Kozeny-Carman equation is frequently mentioned in the literature, it is
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inadequate for compactable cakes. The authors are unaware of any theoretical equations that can be used
with confidence, so the following empirical relationships are used in the present work:

(¢,/¢,)' " =(ala,)'"=(K/K,)"°=1+p,/p, 1)

where the subscript o refers to the null stress values of &, K, and & (specific resistance); S, n, and S are
compactibility parameters; p, is an arbitrary parameter. The permeability, specific resistance, and solidosity
and corresponding exponents in the empirical models are related by:

aKe =1, Jb=n+p (2)

3

THEORY OF FLOW THROUGH COMPACTABLE BEDS

Developing an approximate theory of flow through compactable, porous media in filters requires a static
force balance (in the absence of momentum changes) to give effective stress in terms of the liquid pressure
and Darcy’s law to relate flow rate to the liquid pressure gradient. For planar filtration, the effective
pressure, p;, and the liquid pressure, p;, are related by

pLtps =p dp: +dp; = 0 3)

The quantities p;, and p; vary with position and time. The applied pressure is either constant or a function of
time alone. Darcy’s law relates the liquid pressure gradient to the flow rate in the form

b K 1, @

dt 9= M dx ua do

where v is the filtrate volume per unit filter area; ¢ is the time; g is the liquid flow rate per unit filter area; x is
the distance from the supporting medium to an arbitrary point in the cake; @is the volume of solids per unit
filter area in the distance x. Eq. 4 assumes negligible solids velocity in the cake. The liquid pressure
differential, dp;, , in Darcy’s law has been replaced by - dp, in Eq. 4. As K and « are functions of p., the
expressions in Eq. 4 can be integrated to yield g; as a function of the pressure drop across the cake. The
differential volume of solids dwin dx and the total volume of solids in a cake of thickness L are given by

do=cde, o,=[cde=¢,,L (5)

Most developments in the theory of filtration are based on the mass of solids per unit filter area w. The mass
basis is related to the volumetric basis by w = pw and dw = pdw where p, is the solids density. The
volumetric basis is superior, but in wastewater processing the solids densities are not generally known and
the mass basis must be used.

Integrating the material coordinate formula in Equation 4 and defining a, leads to

s dp,  Ap av
uq, o, = pac ot A u—a 6
L™¢ Io !’ < ( )

av

Eq. 6 involves: g the filtrate rate, e, total volume of dry solids per unit filter area, and 4p., liquid pressure
drop across the cake. Eq. 6 states that if the amount of deposited solids and rate of filtration are known,
then the pressure drop can be calculated. A similar integration in spatial coordinates leads to
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Ap.
g, = |," Kdp, = K,Ap, W)

Dividing Eq. 6 by Eq. 7 provides a useful relationship for the average volume fraction of solids

= Eo = (3)

This relationship does not apply where radial flow is involved (centrifuges, candle filters) or to gravity
thickeners.

MATERIAL BALANCES

A volumetric balance on a per unit filter area basis in the form: slurry volume = cake volume + filtrate
volume, gives

De =@ Ly L+v, v=(i—L)wc ©)
¢S EWV ¢S 83“\7

where ¢ is the volume fraction of solids in the slurry and . is the total volume of solids in the cake and
slurry. Multiplication by the solids density converts @ to w, (a mass basis). Solving for @ in terms of v
yields

o, =¢v/(1- ? ) (10)

sav

If there is no sedimentation (a dubious assumption; Tiller et al., 1995), ¢, will remain constant. On the other
hand, the average volume fraction of solids &, in the cake will generally increase with time. An increase in
&q can have a significant effect on calculated values of @ when concentrated slurries are involved. Slurries
are considered “dilute” or “concentrated” depending on the ratio ¢/&... For dilute slurries with the ratio less
than 0.1, the value of the expression in Eq. 10 does not change much with variations in &,,. However for
concentrated slurries, small variations in &, have relatively large effects on Eq. 10 and calculated values of
@ based on measured values of v. Although the ratio is assumed constant in most theoretical studies, it may
undergo large changes in filtering biosolids. In the example in the next section, it varies from 0.33-0.50.

VOLUME VS. TIME FOR HIGHLY COMPACTABLE CAKES

At the start of a filter run, all of the pressure drop is across the medium, the first “layer” of cake is deposited
under null stress. As the cake grows and its resistance increases, the pressure drop across the cake increases
and relative pressure drop across the medium diminishes. The pressure drop across the cake 4p. increases
and approaches the total applied pressure p.

The pressure drop across the cake in Eq. 6 can be replaced by 4p. = p-uq, R where R, is the medium
resistance. Substituting a from Eq. 10 into Eq. 6 yields

mec{i— ])=va=(¢—#) . an

¢J 6‘.mv ¢s esav

Replacing &., by //a..K., and solving for v leads to

(S|
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1 1 | e
= —ij = — - K)p, 12
’ M, (¢,aw » M, Jn‘ (¢,a M (12)

where the average values have been replaced by the integrals in Eqs. 6 and 7. Use of Eq. 12 avoids the
assumption of constant & and @, Eq. 12 provides a relationship that yields v as a function of ¢, which
generally must be solved numerically. As g, = dv/dt, the time required to produce volume v can be obtained
from

v

{= !i—dv (13)

Substituting the formulas in Eq. 1 for @ and K into Eq. 12 gives

1 74 (+p, I p)" i
vl [T UERLR) T kg1 p) e, (14)
ML )] sao

Integrating and substituting limits yields

1-n _ 1-6 _
MLV=(1+Apc/pa) 1_K0(1+Apc/pa) 1 (15)
pa ¢:ao(l—n) 1—5

Aslong asn<1and §<1,(1-n)and (1 - d) are positive, and Eq. 15 can be used as is. However, when n >
1 and 6> 1, both (1 - n) and (1 - &) are negative; and a profound change take place in the nature of
calculations based on Eq. 15. Rearranging Eq. 15 and substituting K, = //a,&. leads to

I A [1_ 1 H}_ 1 [1— 1 ‘H} (16)
D, o,(n-11 (+A4p. /p,) g,(6-1) (+Ap./p,)

EXAMPLE USING DATA FOR MIERLO BIOSOLIDS

Solution of Eq. 16 yields v as a function of ¢;. The area under the plot of //g; vs. v yields filtration time.
To start the process, the initial flow rate is calculated assuming 4p. = 0 and q; = p/uRm. Subsequently
smaller values of g; are chosen, 4p, is calculated; and v is obtained from Eq. 16. Values of parameters for a
Mierlo sludge flocculated with 1.5 wt. % of polyelectrolyte (Rohm KF975) on a dry solid basis follow: &, =
0.03, K, =83 ° 10?m?, @,=4.016 * 102 m", p, = 1000 Pa, n = 1.83, f#=0.47, §= 2.3 (LaHeij, p.66,
1994). Values of other parameters required for the solution include p = 1.0 * 10° Pa, ¢ = 0.015, = 0.001
Pses, and R, = 5, 25, 50 ¢ 10 m. Using these values, the initial value g, = 1.0 10%R, m/s. WithR,=5
* 10", Eq. 16 takes the following form

. 1 - 1
qu=2.]0 5[1—m}-6385.10 6|:1"m] (17)

where AIT, = Ap,/1000. The two terms involving (1+ AIT;) decrease rapidly with increasing A/Z. In Fig. 3,
plots of 1/q; vs. v are shown for the three values of R,. All three plots approach the same asymptote which
has a zero intercept.
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Plots of dt/dv and t/v are commonly used in analyzing constant pressure filtration data. For the conventional
parabolic relation between v and 7 to be valid, df/dv must be linear in v. The theoretical plots in Fig. 3
provide evidence that a parabolic relation does not exist in the initial stages. Practically, the time required to
reach the linear region can be very short and may be missed in experiments. The three points A,B,C at which
linearity is approached occur respectively at 10, 120, and 500-600 seconds. When the time to linearity is
very short, problems related to introducing slurry into the filter, increasing the pressure, and starting
measurements frequently preclude the possibility of accurate v vs. ¢ data prior to the linear portions of the
plots. If an experimenter only identifies the straight line portion of the curves, he may draw erroneous
conclusions about cake compactibility and the true initial medium resistance. It is essential to start with a
relatively large medium resistance if the initial stages are to be studied.
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Figure 3. Graph showing determination of time based on
Eq. 13 and using parameters for Mierlo sludge (LaHeij,
1994) flocculated with 1.5% dry basis of Rohm KF 975
polyelectrolyte and varying values of R,,

Figure 4. Volume vs. time with pressure increase at 400
second intervals. Curves AB,C refer to City-Chem
Chemfloc 5878 polyelectrolyte dosages of 0.7, 1.4, and 2.8%
dry basis.

ASYMPTOTIC RELATIONSHIP

As A4p, becomes larger and approaches the applied pressure p, the terms in brackets in Eq. 16 approach

unity; and the equation assumes the form

Ha, 1 1

—vﬂ= - (18)
pa dt [¢s(n_ 1) 8:0(5_ 1)}

When the medium resistance is small and the linear region is approached in seconds, integration of Eq. 18

yields

2_2pa

1 1
Ve mo[mn—l)"s,a(a—l)

This v vs. ¢ relationship is independent of applied pressure. For highly compactable cakes with sufficiently
large values of n and &, increasing pressure beyond some minimum value has little effect on v vs. #. When the

(19)

medium resistance is large, the integration must be carried out over the linear region.

The average solidosity can be obtained by combining Eqs. 8 and 16 to give
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This expression represents the maximum possible average volume concentration of solids and is independent
of pressure. Combining the definition of average specific resistance in Eq. 6 with Eqs. 11 and 21 leads to

a, =a,mn-nL (22)
1 p
K, =k —2£ 23

Thus the average specific resistance is proportional to the pressure and the average permeability is inversely
proportional to the pressure for highly compactable cakes.

In Fig. 4, volume vs. time data are shown for a City of Houston waste activated sludge (3.34% by weight of
solids) treated with differing amounts of cationic acrylamide copolymer in mineral oil. After mixing diluted
polymer with the sludge, the slurry was poured into a filter and pressure was applied with compressed
nitrogen. Starting with an initial pressure of 34.5 kPa, the pressure was increased incrementally to 69, 138,
and 207 kPa at intervals of 400 sec. Each time the pressure was increased, a slight jump in dv/df occurred.
The scale in Fig. 4 is too small to show the small discontinuities in the slope.

The large slopes at ¢ = 0 for all the curves shown in Fig. 4 are an indication the medium resistance was smail.
The lack of substantial change in dv/dt at each time increment of pressure is an indication of
supercompactibility.

A rather severe test of Eq. 19 involved using only the last point on each curve to calculate t/v2 and then
using the result to predict the entire v vs. 7 history. The points in Fig. 4 represent values calculated as the
basis of Eq. 19. Although the fit is excellent, it is essential to be conservative in interpreting parabolic fits,
because over limited ranges, many functions can be approximated by second degree polynomials. Sorensen
and Hansen (1993), Bruus (1992), LaHeij (1994), and Tiller and Yeh (1985) have provided data that support
Eq. 18. The methodology for obtaining data similar to the results shown in Fig. 4 offers promise for the
evaluation of flocculants.
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NOTATION

K = permeability, m’
K. = average permeability, m’
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K,  =unstressed cake permeability, m>
L = cake thickness, m

n = compressibility coefficient, Eq. 1
p filtration applied pressure, Pa

Pa = empirical constant, Eq. 1, Pa

Ds = effective of compressive pressure, Pa

4p. = hydraulic pressure across cake, Pa

qL = superficial (specific discharge) velocity of liquid, m/s
R, = medium resistance, m™

t =time, s

v = filtrate volume per unit filter area, m*/m’

W, = mass of inert solids per unit area of filter in cake, kg/m’
x = distance from medium, m

a = local specific flow resistance, m™

.~ = average specific flow resistance, m”

a, = unstressed cake specific flow resistance, m?
B = compressibility coefficient, Eq. 1

5 = compressibility coefficient, Eq. 1

& = volume fraction of solids (solidosity)

&« = average volume fraction of solids in cake

Eo = unstressed value of &

y = liquid viscosity, Pa.s

All. = App,

p = solids density, kg/m’

& = volume fraction of solids in slurry

(] = volume of inter solids per unit filter area between 0 and x, m*/m’
@ = total volume per unit filter area of inert solids in cake, m*/m’
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