TXHYETO.XLS: A Tool To Facilitate Use of Texas-Specific Hyetographs for Design Storm Modeling

Caroline M. Neale Texas Tech University

Acknowledgements

• Funding and direction provided by the Texas Department of Transportation through research contract 0-6824, "New Rainfall Coefficients"

Disclaimer: The contents of this presentation reflect the views of the author(s), who is (are) responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the Federal Highway Administration (FHWA) or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation. This presentation is not intended for construction, bidding, or permit purposes. The United States Government and the State of Texas do not endorse products or manufacturers.

Outline

- Overview
- Methods Currently in Use
 - Empirical, Dimensionless Hyetographs (Williams-Sether, 2004)
 - Graphical Method
 - Linear Interpolation
- Proposed Alternative Method
 - Distribution Mixture Model

- Empirical, Dimensionless, Cumulative Rainfall Hyetographs Developed for Selected Watersheds in Texas
- The graphical method for dimensional modeling found using the Texas Dimensionless Hyetographs is widely used but is limited with small or non-incremental time steps
- Two methods of interpolation were explored
 - Linear interpolation
 - Distribution-mixture function
- TXHYETO.XLS, a provisional tool, was created

- Texas-specific storm hyetographs were reported in Williams-Sether et. al. (2004) as a design storm tool for use in drainage design
- These hyetographs are limited because of difficulty in "dimensionalizing" the tabulated hyetograph values for use in hydrologic software (SWMM/HECHMS)
- Difficulties in dimensionalizing is two-fold
 - Tabulated values must be rescaled into dimensional values
 - Dimensionalized tabulation time intervals may not correspond to the time intervals of interest

 Williams-Sether et. al. (2004) analyzed data from over 1,600 runoff-producing storms at 91 USGS streamflow-gauging stations in North and South Central Texas.

- They developed empirical, dimensionless, cumulative-rainfall hyetographs.
- Storm-quartile classifications were determined using Huff 1967, and 1990 type classification

- A combined dimensionless family of envelopes was produced
- Presented in both graphical and tabular form.
- Used to estimate distributions of rainfall with time for Texas watersheds drainage areas of <160 mi².

Supplement 5. Trimmed and smoothed percentiles for empirical hyetograph analysis, 1959-86.-Continued

[The interval is the center of the percent-of-storm-duration interval; --, no data]

Internal	Percentile										
literval	10th	20th	25th	30th	40th	50th	60th	70th	75th	80th	90th
			First- th	rough fourth-q	uartile storms o	ombined; storr	n duration 0 to 1	72 hours			
2.5	1.08	2.04	2.58	3.34	4.69	6.37	7.81	10.30	12.16	14.66	21.60
5.0	2.35	4.32	5.47	6.84	9.74	13.58	16.97	21.38	24.48	28.12	37.57
7.5	3.59	6.56	8.32	10.27	14.68	20.49	25.56	31.57	35.63	40.20	51.55
10.0	4.82	8.78	11.16	13.68	19.47	26.83	33.19	40.38	45.16	50.47	63.04
12.5	5.92	10.85	13.80	16.85	23.94	32.42	39.68	47.57	52.72	58.62	71.66
15.0	6.92	12.77	16.23	19.72	27.91	37.21	45.23	53.41	58.54	64.61	77.38
17.5	7.80	14.43	18.29	22.14	31.01	41.00	49.56	57.96	62.97	68.83	80.89
20.0	8.60	15.99	20.23	24.32	33.59	44.11	53.16	61.80	66.74	72.25	83.32
22.5	9.31	17.38	21.89	26.21	35.63	46.55	55.92	65.02	69.84	74.94	85.01
25.0	10.06	18.75	23.51	28.07	37.35	48.54	58.09	67.80	72.62	77.28	86.35
27.5	10.87	20.11	25.00	29.79	38.88	50.23	59.80	70.07	75.06	79.47	87.66
30.0	11.70	21.51	26.51	31.41	40.52	51.68	61.22	71.87	76.92	81.38	88.96
32.5	12.51	22.77	27.81	32.85	42.01	52.90	62.34	73.12	78.10	82.81	90.18
35.0	13.35	24.09	29.22	34.30	43.56	54.27	63.76	74.21	79.02	84.02	91.29
37.5	14.16	25.27	30.47	35.54	44.99	55.49	65.16	75.15	79.64	84.83	92.25
40.0	14.96	26.51	31.85	36.89	46.42	56.80	66.62	76.11	80.22	85.47	93.05
42.5	15.78	27.58	33.21	38.24	47.68	58.03	67.98	77.06	80.86	86.03	93.72
45.0	16.71	28.90	34.80	39.80	49.13	59.31	69.33	78.12	81.72	86.61	94.24
47.5	17.89	30.35	36.44	41.44	50.66	60.49	70.35	79.07	82.56	87.09	94.64
50.0	19.41	32.28	38.33	43.33	52.45	61.97	71.60	80.06	83.51	87.72	94.92
52.5	21.16	34.45	40.32	45.28	54.39	63.51	72.89	81.15	84.53	88.42	95.18
55.0	22.94	36.99	42.49	47.39	56.57	65.39	74.37	82.30	85.61	89.20	95.40
57.5	24.82	39.38	44.67	49.56	58.80	67.56	76.05	83.52	86.75	90.06	95.70
60.0	26.62	41.64	46.83	51.75	61.09	69.85	77.89	84.82	88.01	91.04	96.06
62.5	28.29	43.62	49.00	53.94	63.38	72.11	79.55	86.10	89.22	91.97	96.47
65.0	29.86	45.38	50.95	56.07	65.59	74.32	81.14	87.25	90.31	92.83	96.90
67.5	31.76	47.16	52.88	58.23	67.77	76.38	82.65	88.36	91.31	93.60	97.32
70.0	33.75	49.16	54.81	60.32	69.87	78.21	84.02	89.37	92.17	94.27	97.68
72.5	36.00	51.52	56.94	62.47	71.97	80.00	85.35	90.35	92.90	94.84	97.97
75.0	38.51	54.15	59.24	64.72	73.98	81.61	86.69	91.30	93.55	95.38	98.19
77.5	41.45	57.17	62.09	67.30	76.10	83.25	88.02	92.25	94.20	95.89	98.38
80.0	44.54	60.42	65.22	70.08	78.24	84.84	89.34	93.15	94.86	96.39	98.56
82.5	48.24	64.13	68.85	73.31	80.60	86.54	90.72	94.08	95.54	96.87	98.72
85.0	52.41	68.26	72.78	76.77	83.07	88.30	92.09	94.98	96.22	97.34	98.90
87.5	57.68	72.90	77.10	80.53	85.81	90.21	93.49	95.87	96.93	97.81	99.09
90.0	64.02	77.90	81.55	84.43	88.65	92.18	94.92	96.75	97.61	98.28	99.29
92.5	71.71	83.28	86.22	88.48	91.66	94.22	96.37	97.65	98.29	98.75	99.49
95.0	80.43	88.80	90.85	92.47	94.62	96.21	97.81	98.54	98.96	99.22	99.70
97.5	90.01	94.42	95.53	96.53	97.64	98.21	99.26	99.44	99.65	99.70	99.92

Dimensionalization

- Requires the user to rescale the time and percent cumulative rainfall into actual durations and total storm depth.
- Engineer must determine the depth for a particular duration
 - Various of tools to do this in Texas:
 - Asquith and Roussel (2004) and Asquith (1998) (DDF Atlas)
 - Frederick et. Al (1997)
 - Hershfield (1961) (TP-40)
 - EBDLKUP-NEW (a campanion product for this project)
 - Examples of tools elsewhere:
 - NOAA Atlas 14

Example of Rescaling Axes

- Example
 - Suppose a 4% chance (25 year), 6 hour storm in Texas has an anticipated depth of 10 inches
 - After rescaling, the horizontal axis would range from 0 to 6 hours
 - After rescaling, the vertical axis would range from 0 to 10 inches

Alternative Method-Linear Interpolation

- An initial alternative method of Linear Interpolation was explored using Excel
- Linear Interpolation takes specified values of depth and duration, rescales them, and exports time and depth for time steps specified by user

Linear Interpolation Methodology

- Input desired duration and depth
- Exports rescaled duration and depth to linear interpolation tab

4	A B	С	D	E	F	G	Н		J	K	L	M	N	0	Р	Q
1	Spreads	heet to di	mensiona	lize Texas	s hyetogr	aphs										
2																
3		INPUT:	6	Storm D	uration, h	ours, fro	m DDF A	tlas, TP4	40, or eq	uivalent.						
4		INPUT:	10	Storm D	epth , inc	<= From	DDF At	as, TP40), HY35	or equiva	alent					
5						Percenti	le Storm									
6	Hours	Minutes	Time(Hrs	Depth (ir	%-Dura	10	20	25	30	40	50	60	70	75	80	90
7	0	9	0.15	0.637	2.5	1.08	2.04	2.58	3.34	4.69	6.37	7.81	10.3	12.16	14.66	21.6
8	0	18	0.3	1.358	5	2.35	4.32	5.47	6.84	9.74	13.58	16.97	21.38	24.48	28.12	37.57
9	0	27	0.45	2.049	7.5	3.59	6.56	8.32	10.27	14.68	20.49	25.56	31.57	35.63	40.2	51.55
10	0	36	0.6	2.683	10	4.82	8.78	11.16	13.68	19.47	26.83	33.19	40.38	45.16	50.47	63.04
11	0	45	0.75	3.242	12.5	5.92	10.85	13.8	16.85	23.94	32.42	39.68	47.57	52.72	58.62	71.66
12	0	54	0.9	3.721	15	6.92	12.77	16.23	19.72	27.91	37.21	45.23	53.41	58.54	64.61	77.38
13	1	3	1.05	4.1	17.5	7.8	14.43	18.29	22.14	31.01	41	49.56	57.96	62.97	68.83	80.89
14	1	12	1.2	4.411	20	8.6	15.99	20.23	24.32	33.59	44.11	53.16	61.8	66.74	72.25	83.32
15	1	21	1.35	4.655	22.5	9.31	17.38	21.89	26.21	35.63	46.55	55.92	65.02	69.84	74.94	85.01
16	1	30	1.5	4.854	25	10.06	18.75	23.51	28.07	37.35	48.54	58.09	67.8	72.62	77.28	86.35
17	1	39	1.65	5.023	27.5	10.87	20.11	25	29.79	38.88	50.23	59.8	70.07	75.06	79.47	87.66
18	1	48	1.8	5.168	30	11.7	21.51	26.51	31.41	40.52	51.68	61.22	71.87	76.92	81.38	88.96
19	1	57	1.95	5.29	32.5	12.51	22.77	27.81	32.85	42.01	52.9	62.34	73.12	78.1	82.81	90.18
20	2	6	2.1	5.427	35	13.35	24.09	29.22	34.3	43.56	54.27	63.76	74.21	79.02	84.02	91.29
21	2	15	2.25	5.549	37.5	14.16	25.27	30.47	35.54	44.99	55.49	65.16	75.15	79.64	84.83	92.25
22	2	24	2.4	5.68	40	14.96	26.51	31.85	36.89	46.42	56.8	66.62	76.11	80.22	85.47	93.05
23	2	33	2.55	5.803	42.5	15.78	27.58	33.21	38.24	47.68	58.03	67.98	77.06	80.86	86.03	93.72
24	2	42	2.7	5.931	45	16.71	28.9	34.8	39.8	49.13	59.31	69.33	78.12	81.72	86.61	94.24
25	2	51	2.85	6.049	47.5	17.89	30.35	36.44	41.44	50.66	60.49	70.35	79.07	82.56	87.09	94.64
26	3	0	3	6.197	50	19.41	32.28	38.33	43.33	52.45	61.97	71.6	80.06	83.51	87.72	94.92
27	3	9	3.15	6.351	52.5	21.16	34.45	40.32	45.28	54.39	63.51	72.89	81.15	84.53	88.42	95.18
28	3	18	3.3	6.539	55	22.94	36.99	42.49	47.39	56.57	65.39	74.37	82.3	85.61	89.2	95.4
29	3	27	3.45	6.756	57.5	24.82	39.38	44.67	49.56	58.8	67.56	76.05	83.52	86.75	90.06	95.7
30	3	36	3.6	6.985	60	26.62	41.64	46.83	51.75	61.09	69.85	77.89	84.82	88.01	91.04	96.06
31	3	45	3.75	7.211	62.5	28.29	43.62	49	53.94	63.38	72.11	79.55	86.1	89.22	91.97	96.47
32	3	54	3.9	7.432	65	29.86	45.38	50.95	56.07	65.59	74.32	81.14	87.25	90.31	92.83	96.9
33	4	3	4.05	7.638	67.5	31.76	47.16	52.88	58.23	67.77	76.38	82.65	88.36	91.31	93.6	97.32
34	4	12	4.2	7.821	70	33.75	49.16	54.81	60.32	69.87	78.21	84.02	89.37	92.17	94.27	97.68
35	4	21	4.35	8	72.5	36	51.52	56.94	62.47	71.97	80	85.35	90.35	92.9	94.84	97.97
36	4	30	4.5	8.161	75	38.51	54.15	59.24	64.72	73.98	81.61	86.69	91.3	93.55	95.38	98.19
37	4	39	4.65	8.325	77.5	41.45	57.17	62.09	67.3	76.1	83.25	88.02	92.25	94.2	95.89	98.38
38	4	48	4.8	8.484	80	44.54	60.42	65.22	70.08	78.24	84.84	89.34	93.15	94.86	96.39	98.56
39	4	57	4.95	8.654	82.5	48.24	64.13	68.85	73.31	80.6	86.54	90.72	94.08	95.54	96.87	98.72
40	5	6	5.1	8.83	85	52.41	68.26	72.78	76.77	83.07	88.3	92.09	94.98	96.22	97.34	98.9
41	5	15	5.25	9.021	87.5	57.68	72.9	77.1	80.53	85.81	90.21	93.49	95.87	96.93	97.81	99.09
42	5	24	5.4	9.218	90	64.02	77.9	81.55	84.43	88.65	92.18	94.92	96.75	97.61	98.28	99.29
43	5	33	5.55	9.422	92.5	71.71	83.28	86.22	88.48	91.66	94.22	96.37	97.65	98.29	98.75	99.49
44	5	42	5.7	9.621	95	80.43	88.8	90.85	92.47	94.62	96.21	97.81	98.54	98.96	99.22	99.7
45	5	51	5.85	9.821	97.5	90.01	94.42	95.53	96.53	97.64	98.21	99.26	99.44	99.65	99.7	99.92
40		-	1		-											

Methodology

- User chooses desired time step
- Reprogramming is necessary for different time steps

	Α	В	С	D	E	F	G	Н	1	J	K
1	Interpolated	Hyetograph		Inte	rpolation Po	oints based	on Time in A3	o A+Max	Dimensional H	lyetograph (fro	om Tables)
2	Time(min)	Time(hrs)	Depth(in)	T-lo	w	T-high	D-low	D-high	Time(Hrs)	Depth (in)	
3	Ó	0.00	0.00		0	0.15	0	0.637	0	0	
4	15	0.25	▲ 1.12		0.15	† 0.3	0.6 8 7	1 358	0.150	0.637	
5	30	0.50	2.26		0.45	0.6	2.049	2.683	0.300	1.358	
6	45	0.75	3.24		0.75	0.9	3.242	3.721	0.450	2.049	
7	60	1.00	3.97		0.9	1.05	3.721	4.1	0.600	2.683	
8	75	1.25	4.49		1.2	1.35	4.411	4.655	0.750	3.242	
9	90	1.50	4.85		1.5	1.65	4.854	5.023	0.900	3.721	
10	105	1.75	5.12		1.65	1.8	5.023	5.168	1.050	4.1	
11	120	2.00	5.34		1.95	2.1	5.29	5.427	1.200	4.411	
12	135	2.25	5.55		2.25	2.4	5.\$49	5.68	1.350	4.655	
13	150	2.50	5.76		2.4	2.55	5.68	5.803	1.500	4.854	
14	165	2.75	5.97		2.7	2.85	5.931	6.049	1.650	5.023	
15	180	3.00	6.20		3	3.15	6.197	6.351	1.800	5.168	
16	195	3.25	6.48		3.15	3.3	6.851	6.539	1.950	5.29	
17	210	3.50	6.83		3.45	3.6	6.756	6.985	2.100	5.427	
18	225	3.75	7.21		3.75	3.9	7 211	7.432	2.250	5.549	
19	240	4.00	7.57		3.9	4.05	7 432	7.638	2.400	5.68	
20	255	4.25	7.88		4.2	4.35	7,821	8	2.550	5.803	
21	270	4.50	8.16		4.5	4.65	8.161	8.325	2.700	5.931	
22	285	4.75	8.43		4.65	4.8	8.325	8.484	2.850	6.049	
23	300	5.00	8.71		4.95	5.1	8.654	8.83	3.000	6.197	
24	315	5.25	9.02		5.25	5.4	9.021	9.218	3.150	0.351	
25	330	5.50	9.35		5.4	5.55	9.210	9.422	3.300	0.009	
20	340	5.75	9.09		5.7	15+00	9.021	9.021	3.450	0.700	
28	500	0.00	10.00		0	12+03	10	10	3.000	7 211	
20									3,000	7.211	
30	=G3+(H3-G	3)*(B3-E3)/(F3-E3)						4 050	7.432	
31		(¢1¢2.¢1¢42 M		2.01012	1))				4 200	7.000	
32		ͺ ψ ιφΟ,φΙφ 1 ζ,Ι		0.01040	,,,,))				4.350	8	
33									4.500	8,161	
34	=	INDEX(\$I\$3	\$I\$43,MATCH	I(B3,\$I\$	\$3:\$I\$43,1)+	-1)			4,650	8.325	
35									4.800	8.484	
36			=INDEX(\$J\$	3:\$J\$43	3.MATCH(B	3.\$I\$3:\$I\$4	3.1))		4,950	8.654	
37					.,	-,			5.100	8.83	
38							1/00 0100.0104	2 41 41	5.250	9.021	
39				=IND	EX(\$1\$3:\$1	1943,MATCI	1(83,\$1\$3:\$1\$4	3,1)+1)	5.400	9.218	
40							1	5	5.550	9.422	
41			T	his row	/ fixed set T	ime = DUR/	ATION + 1.0E-9		5.700	9.621	
42			01	r the se	arch will fail	last row of	interpolation	1	5.850	9.821	
43									6	10	
44									100000006	10	
45											

Alternative Method-Distribution Mixture Model

- Linear interpolation method is situation specific
- Distribution-mixture model
 - fits smooth functions to the tabulation values from Texas Dimensionless Hyetograph
 - can be used to directly estimate time-depth pairs
 - Time depth pairs can be directly input into computer based runoff modeling software (SWMM/HECHMS)

Distribution-Mixture Model

- Several candidate functions were explored based on the shape of the 50th and 90th percentile curves
- A function built from a mixture of two distributions was selected as the best fit functional form because it was able to reproduce the shape of the dimensionless hyetographs over the entire range of the dimensionless storm better than the other functions researched .
- The functional form was fit using a non-linear leastsquares approach where the difference between the model value and the tabulated value were minimized by changing the values of the parameters

Methodology

Distribution-mixture function model

$$D^{*}(t^{*}) = w_{1}(I_{t^{*}}(\alpha,\beta)) - w_{2}(\frac{1}{\sigma\sqrt{2\pi}}\exp(-\frac{(t^{*}-\mu)^{2}}{2\sigma^{2}}))$$

where

- $D^*()$ is the dimensionless depth of precipitation as a function of dimensionless time.
 - t^* is the dimensionless time.
 - w_1 is a weighting parameter.
 - α is a shape parameter for the Beta distribution.
 - β is a shape parameter for the Beta distribution.
 - w_2 is a weighting parameter.
 - μ is the mean (used to locate the mode of the function in this work).
 - σ is the standard deviation (used to control the width of the function in this work).

Parameter Estimation

- The functional form was fit using a non-linear leastsquares approach.
- The difference between the model value and the tabulated values were minimized by changing the parameters.
- Excel Solver (GRG Algorithm) was used.
 - Program defaults were used with initial estimates by trial-and-error

$$D^{*}(t^{*}) = w_{1}(I_{t^{*}}(\alpha,\beta)) - w_{2}(\frac{1}{\sigma\sqrt{2\pi}}\exp(-\frac{(t^{*}-\mu)^{2}}{2\sigma^{2}}))$$

Distribution-Mixture Model

• Comparison of Williams-Sether tabulated values to distribution-mixture model function

TXHYETO.XLS

	Α	B C		D	E	F	G	H	1	J	K	L
1	Spreadsheet	t to dimensior	nalize Texas	hyetograph	S					Mixtu	re Model Parameter	s
2	50th Percer	ntile Hyetogra	aph							W 1	1.038977414	
3		INPUT:	6	Storm Dura	tion, hour	s, from DD	F Atlas, 1	P40, or e	quivalent.	α	0.795462882	
4	INPUT:		10	Storm Dept	h, inches	, from DDI	F Atlas, TI	P40, or eq	uivalent.	β	3.485892325	
5										W ₂	0.248832841	
6										μ	0.471873548	
7	TIME (MIN)	TIME (HRS)	DEPTH (IN)						σ	0.283390998	
8	0	0	0	4								
9	15	0.25	1.14086									
10	30	0.5	2.355945			-0000 00	¢4 (¢1/¢0			00 CL		
11	45	0.75	3.252356	-IF(B0\-(J,U,IF(D0/	-φυφο,φυ	4,(QNQZ),04,			a ere	\$3,90,904,1000,0,1)	(1)
12	60	1	3.928036				-φιζφο ι	NORM.DIC		, ф г . ф		φ4))
13	75	1.25	4.438726									
14	90	1.5	4.826142									
15	105	1.75	5.125504									
16	120	2	5.367787									
17	135	2.25	5.580054									
18	150	2.5	5.785012									
19	105	2.75	6.000375									
20	180	3 35	0.230334									
21	195	3.20	6.000373									
22	210	3.5	7 126003									
23	223	3.75	7.120003									
25	255	4 25	7 819879									
26	270	4.5	8 16963									
27	285	4.75	8.507161									
28	300	5	8.823376									
29	315	5.25	9.111306									
30	330	5.5	9.366478									
31	345	5.75	9.586911									
32	360	6	10									
33												
34												
35												
14 4	Dimens	ionless2Dimensi	onal-50 Dim	ensionless2Dime	ensional-90]+]					i i	

Comparison

Compare the interpolation and distribution-mixture model – less than 5% difference
A 4 5
A 4 5
A 6
A 7
A 6
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7
A 7

	E	F	G	н		J	K	L		M	N		0	
1	Spread	dsheet to	o dimensio	nalize Te	xas hyet	ographs								
2	50-th	Percent	ile Hyetog	raph										
3		INPUT:	6	Storm D	uration, h	ours, from [DDF Atlas, T	P40, or	equivale	nt.				
4		INPUT:	10	Storm D	epth , inc	hes, from D	DF Atlas, TF	P40, or e	quivalen	t.				
5														
6														
	E (MIN)	E (HRS)	TH (IN) - MIXTURE	TH (IN) - INTERPOLATION	CENT DIFFERENCE	12 -					,e ^{00⁶}	, 0 0		
_	W	W	읍	8	н С	8 -								
7	F	F			<u> </u>									
8	0	0	0	0	0.00%	_			~	Θ				
9	15	0.25	1.1409	1.118	2.08%	Sel			~	,				
10	30	0.5	2.3559	2.20	4.23%	헐			~					
12	45	0.75	3.2524	3.242	0.32%	<u> </u>		~	, o ~					
12	75	1 25	3.920	3.974	-1.10%	b		`						-
14	75	1.20	4.4307	4.492	-1.19%	ă	6	, o ~						\vdash
17	105	1 75	5 1255	5 12	0.11%									\vdash
16	120	2	5 3678	5 3 3 6	0.01%		~							\vdash
17	135	2 25	5 5801	5 549	0.56%	4	9							\vdash
18	150	2.25	5 785	5 762	0.00%		<u> </u>							\vdash
19	165	2 75	6 0004	5.97	0.50%		~							\vdash
20	180	- 3	6 2383	6 197	0.67%									
21	195	3.25	6.5054	6.476	0.45%		Ç							
22	210	3.5	6.8025	6,832	-0.44%	2								
23	225	3.75	7.126	7.211	-1.18%		7							
24	240	4	7.4684	7.569	-1.33%		\mathbf{e}							
25	255	4.25	7.8199	7.881	-0.77%		/							
26	270	4.5	8.1696	8.161	0.11%									
27	285	4.75	8.5072	8.431	0.90%			2	2		F	ć	-	
28	300	5	8.8234	8.713	1.27%	0	1	2	3	4	5	0	/	
29	315	5.25	9.1113	9.021	1.00%	1			Time (ł	nours)				
30	330	5.5	9.3665	9.354	0.13%	1								
31	345	5.75	9.5869	9.688	-1.04%	_ _	DEPTH (IN) - I	MIXTURE	0	EPTH (IN	I) - INTER		N	
32	360	6	10	10	0.00%	-				(ii	.,	. contro		
33	1													

HEC-HMS Example

- TXHYETO.XLS efficiently supplies design storms for Texas into HEC-HMS or SWMM
- Example for 6-hour storm with 15 min. increments

Input desired time increments (15 min. for this example)

	🔓 Time-Series Gag	e Time Window Table Graph
	Name:	TXHYETO-DesignStorm
	Description:	
	Data Source:	Manual Entry 📃
4	Units:	Cumulative Inches
-	→ Time Interval:	15 Minutes 💽
	Latitude Degrees:	
	Latitude Minutes:	
-	Latitude Seconds:	
	Longitude Degrees:	
	Longitude Minutes:	
	Longitude Seconds:	

HEC-HMS

• The purpose of the tool is to simplify supplying design storms for Texas into HEC-HMS or SWMM.

HEC-HMS

	A	В	C	D	E			
1	Spreadsheet	to dimension	nalize Texas	hyetographs			🛛 🚰 Time-Series Gage Tin	ne Window Iable Graph
2	50th Percer	ntile Hyetogra	aph					
3		INPUT:	6	Storm Duration,	, hou		Time (ddMMMYYYY, HH	Precipitation (IN)
4		INPUT:	10	Storm Depth , ir	nche		01Jan2000, 00:00	0 🔺
5								
7		TIME (HRS)	DEPTH (IN)			01Jan2000, 00:15	1.140860275
8	0	0	0	↓ ◆			01Jan2000, 00:30	2,355945266
9	15	0.25	1.14086			Input tabulated		
10	30	0.5	2.355945		E/B8	πραι ιαραίατου	01Jan2000, 00:45	3.2523557
11 12	45 60	0.75	3.252356		1 (100	depths from	01Jan2000, 01:00	3.92803553
13	75	1.25	4.438726				0130000_01-15	4 400706076
14	90	1.5	4.826142			IXHYEIO.XLS	01Jan2000, 01:15	4,430720070
15	105	1.75	5.125504				01Jan2000, 01:30	4.826142335
17	120	2 25	5 580054				013-52000_01/45	E 125504072
18	150	2.5	5.785012				015an2000, 01:45	5.125504072
19	165	2.75	6.000375				01Jan2000, 02:00	5.367787363
20	180	3	6.238334				011ap2000_02:15	5 580053565
21 77	195	3.20	6 802513				015812000, 02.15	3,300033303
23	210	3.75	7.126003				01Jan2000, 02:30	5.785012167
24	240	4	7.468401				011ap2000, 02:45	6.000374911
25	255	4.25	7.819879					
20	270	4.5	8.16963				01Jan2000, 03:00	6.238334305
27	300	4.75	8 823376				013552000_02:15	6 5052725
29	315	5.25	9.111306				015an2000, 03.15	0.0000700
30	330	5.5	9.366478				01Jan2000, 03:30	6.802512679
31	345	5.75	9.586911				01Jan2000, 03:45	7,126003481
32	500						,	

HEC-HMS

Conclusions

- The provisional tool, TXHYETO.XLS, dimensionalizes the Texas dimensionless hyetographs for use in rainfall-runoff models
- Tool uses a distribution-mixture function to approximate the shape of the Texas Dimensionless Hyetograph
- Distribution-mixture model utilized in TXHYETO.XLS replicates estimates made using linear interpolation with a relative error of <5%

- Williams-Sether, Tara, Asquith, W.H., Thompson, D.B., Cleveland, T.G., and Fang, Xing, 2004, Empirical, dimensionless, cumulative-rainfall hyetographs developed from 1959–86 storm data for selected small watersheds in Texas: U.S. Geological Survey Scientific Investigations Report 2004–5075, 125 p.
- Asquith, W.H., 1998, Depth-duration frequency of precipitation for Texas: U.S. Geological Survey Water-Resources Investigations Report 98–4044, 107 p., http://pubs.usgs.gov/wri/ wri98-4044/.
- Asquith, W.H., and Roussel, M.C., 2004, Atlas of depth-duration frequency of precipitation annual maxima for Texas: U.S. Geological Survey Scientific Investigations Report 2004–5041, 106 p.
- Frederick, R.H., Meyers, V.A., and Auciello, E.P., 1977, Five to 60-minute precipitation frequency for the eastern and central United States: Silver Springs, Md., U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, NOAA Technical Memorandum NWS HYDRO–35, 36 p.
- Hershfield, D.M., 1961, Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years: Washington, D.C., U.S. Weather Bureau Technical Paper 40, 61 p.
- Huff, F.A., 1967, Time distribution of rainfall in heavy storms: Water Resources Research, v. 3, no. 4, p. 1,007–1,019.
- Huff, F.A., 1990, Time distributions of heavy rainstorms in Illinois: Champaign, Illinois, Illinois State Water Survey Circular 173, 18 p.