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= _T‘éias Department of Transportation.

—Various projects since FY 2000.
— Current: 0-6070 Use of Rational and Modified
Rational Method for Drainage Design.

= William H. Asquith, USGS

—Researeh colleague who provided much of the |

" ideas andiauthored:thesRipackage that makes
" "the simulations possible.
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__= Result of a question:
h — “After all, how hard can it rain?”
= |ntensity has variety of uses

— BMP design
— Rational method

p=Examine use of recent tools:

-

. — Are estimated intensities consistent with
observations?




= Texas specific:
— Asquith-and others (2004)
— Williams-Sether and others (2004)
— Asquith and others (2006)

= Global Maxima

g —Jennings (1950), Paulhus (1965), Barcelo,and, .=
others (1997),:Smith-and others (2001)
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= USGS

= Aé?qa ith a n d Ot h e rS :::"::f;.r:ﬁmw‘:;”the Texas Department of Transportation
(2004).

Synthesis of Rainfall and Runoff

— 92 stations (up to 1 35) Data Used for Texas Department of
_ Transportation Research Projects
— 1600 paired events. 0-4193 and 0-4194

Open-File Report 2004-1035
{TxDOT Research Reports 0-4193-2 and 0-4194-2)

U.S. Department of the Interior
U.S. Geological Survey
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= Willlams-Sether-and others
S0 o)) —
— 92 stations, 1507 storms, known
to have produced runoff.
Duration divided into 4-quartiles.

= Quartile with largest
accumulation of rainfall defines
“storm quartile”

Observed rainfall collected into
2.5-percentile “bins”

= Smoothing:(te:force:monotonic
g’_’dimensionlé's'sﬂhy'e' tographs).
=" Result is empirical-

dimensionless-hyetograph

In cooperation with the Texas Department of Transportation

Empirical, Dimensionless, Cumulative-
Rainfall Hyetographs Developed From
1959-86 Storm Data for Selected

Small Watersheds in Texas

Scientific Investigations Report 2004—5075
(TxDOT Research Report 0—4194-3)

U.S. Department of the Interior
U.S. Geological Survey
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Slopes are
dimensionless
“‘intensity”
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10% steps
20% steps
25% steps
33% steps
50% steps

Uniform
(average)
“intensity”
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In cooperation with the Texas Department of Transportation

Statistical Characteristics of Storm
Interevent Time, Depth, and Duration for
Eastern New Mexico, Oklahoma, and Texas

U.S. Department of the Interior
U.S. Geological Survey

IMUISUENS
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= Asquith and others (2006)

— 774 stations in New Mexico,
Oklahoma, and Texas.

Quantiles for each “storm.”

(Half-million in. T.exas).

L-moments computed for
each station for duration
and depth.

Kappa distribution
recommended as most
appropriate distribution for
depth and duration.




Intensity. Simulations

42 Statistical Characteristics of Storm Interevent Time, Depth, and Duration for Eastern New Mexico, Oklahoma, and Texas

Papa, 2000, p. 74). The cumulative distribution of storm inter-
event times is
MiT-x

Fory=1 _‘.\-u/!

forxzMITandn = 1.2.... (10)
where F is the cumulative or nonexceedance probability for
the x interevent time, and MJT is the minimum interevent
time in days. The parameter A is the mean interevent time in
days. The inclusicn of the minimum interevent time adjusts the
exponential distribution because interevent times less than the
minimum interevent time are not possible. Equation 10 can be
solved in terms of x. The resulting equation is the quantile
function of interevent time and is

x(F) = MIT<A-MIT)ln(1-F) foe x2MIT. (1)

When random numbers between 0 and | ase substituted for
F inequation 11 with A equal to 7.60 days and MIT equal to
1 day (24 houss), a random saquence of interevent times is gen-
erated. Five simulations based on a random sequence of five
interevent times are listed in table 21 (at end of report). The
mean of the simulatiors is 7.19 days—the mean approaches
7.60 as the number of simulations becomes larger.

Itis illustrative to compare the 7.60 days mean interevent
time to the results of Asquith and Roussel (2003, fig. 4).
Asquith and Roussel (2003, fig, 4) shows that the interoccur-
rence of daily minfall (not bourly) of 0.05 inch or more is, on
average about 8 days for the Amarillo area. The two interevent
times are of the same order as expected, but the values should
not be equal.

Example 3: Estimation of the Empirical Distribution of
Storm Depth

PROBLEM: The 98th-percentile storm from the empirical
distribution of storm depth for a site very close to station 4311
Houston Alief, Tex. (fig. 3C) (62 years of record), is required
by an environmental consulting firm working on a project pro-
posal in a watershed where BMPs are to have a 24-hour draw-
down time. Hence, the statistics of storms with a 24-hour mini-
mum interevent time are appropriate.

SOLUTION: The %8th percentile and other selectad per-
centiles of storm depth are listed in appendix 4-4.5 and in col-
umn two of table 22 (at end of report). The 98th-percentile
storm has adepth of 4.55 inches. (Column three of table 2215 a
component of example 4.) The median stoem depth is 0.44 inch
and the interquartile range is 1.03 inches (1.18 minus 0.15) for
station 4311,

Example 4: Estimation of the Continuous Distribution of
Storm Depth

*PROBLEM: As part of a city ordinance, a BMP for a
small urban watershed in the city is believed to accommodate
90 percent of all storms when 2 inches or less of runoff is cap-

tured. The temporal distribution of runoff (outflow rate) from
the BMP is to be ignored. Engineering firm A is to design a
BMP fora given hed in which the ordi applies. The
ordinance states that the BMP is to have a 24-hour dmawdown
time; hence an analysis of storms with a 24-hour minimum
interevent time is required. Engineering firm B is questioning
whether a 2-inch design runoff would accommodate the %0th-
P ile storm as reflected by the ordinance or instead would
accommedate approximately the 95th-percentile storm. Thus,
firm B believes that the ordinance might contribute to over-
design of BMPs. The scientific credibility of the ordinance
hence 1s in question: the results of this report can be usad to
evaluate the ordinance. Assume, for the purpose of illustration,
that near the planned BMP is long-term station 4311 Houston
Alief, Tex. (station considered in example 3).

SOLUTION: The first step toward the solution is to com-
pute the depth of minfall that produces 2 inches of runoff on the
watershed. A simple runoff model (Adams and Papa, 2000, p.
121, eq. 6.28) usad for illustration is

R = o(P-5p). 12

where R is runoff in inches, ¢ is the runoff coefficient, P is
rainfall in inches, and S, is depression storage or an initial
abstraction in inches. It is widely accepted that a typical initial
abstraction for the watershed is 0.25 inch and the runoff coeffi-
cent is about 0.8, Upon variable substition, the rainfall pro-
ducing 2 inches of munoff is 2.75 inches.

The L-moments of storm depth for a 24-hour minimum
interevent time for this station are 088849 inch, 0.52054 inch,
0.45778, and 023879 for the mean, L-scale, L-skew, and
L-kurtosis, respectively (appendix 4-2.5). A four-pamameter
kappa distribution (see section “Quantile Functions of Storm
Depth and Dumtion” in this report) can be fit by use of these
L-moments using an algorithm such as in Hosking (1996) (data
oot shown in this report). The fitted kappa distribution corre-
sponding to these L-moments is

Fl 450

— _04 1028 [, rd- Bt
P(F) = —0.4090 + ‘0-“”11 ‘[‘W)] ] (13

where P is storm depth and F is nonexceadance probability.
Substitting 2.75 inches for the left side of the equation and
solving the equation for F yields 0.932 or 93.2 percent. In
other words, a rainfall depth of 2.75 inches is about the 93rd-
percentile storm depth. Therefore, a statistical estimate of the
storm percentage associated with 2 inches of rupoff for the
watershed is 3 percentage points larger than 90 percent. The
90th percentile for the distribution (F = 0.90) is 2.24 inches.

Thus, the ordinance reflects a depth of 2.75 inches;
whereas, the statistical estimate of the %0th-percentile storm
1s 2.24 inches using the Hosking (1996) algorithm. Therefore,
the claim of engineering firm B that a storm associated with 2
inches of runoff would accommodate approximately the
95th-percentile storm is questionable. The depth for the 95th-
percentile storm is 3.18 inches by substituting F = 0.95 into

= Asquith and others (2006)

Examples provide “tools” to
parameterize the empirical-
dimensionless-hyetographs.

Page 42 explains how to
use Kappa quantile function
and L-moments to recover
storm depth (vertical axis of
dimensionless;hyetograph).

————




Intensity. Simulations

equation 13. The runoff from the 95th-percentile storm is about
2.34 inches from equation 12.

To furtber illustrate the application of this report, from
equation 13 the quantiles for each of the selected percentiles or
nonexceedance probabilities (001, 0,02, 0.10, 0.25,0.50,0.75,
0.90, 0.98, and 0.99) are listed in column three of table 22. As
seen in the table, the empirical storm depth percentiles and
storm depth percentiles from the kappa distribution are similar
for each percentile as expected.

Example 5: Statistical Simulation of Rainfall Intensity

*PROBLEM: An analyst wants to corstruct synthetic
temporal distributions of average rainfall intensity for station
4311 Houston Alief, Tex.. toinvestigate the influence of rainfall
rates on the spill volume of a numerical model of a particular
BMP design.

SOLUTION: The kappa distribution of storm depth P
for nonexceedance probability F is given as equation 13 in
example 4. The L-moments of storm duration for the station
are listed in appendix 4-3.5. The mean, L-scale, L-skew, and
L-kurtosis are 13.434 hours, 8.1389 hours, 0.46763, and
0.20844, respectively. Fitting a knppa distribution to these
L-moments using the Hosking (1996) algorithm (data not
shown in this report) results in the following equation for the
storm duration D in terms of nopexceadance probability, F:

28.137

D(F) = - 23466+ (gezaec)

147 A
It is convenient to assume that storm depth and duration
are independent random variables, which is supported by the
scattered relation in figure 9. Under this assumption, storm
depth is simulated by g ing a rand ber b
and 1, substituting this value for F, and solving equation 13 for
P. A similar process for storm duration is done with the gener-
ation of a new random number between 0 and 1, substituting
this value for F, and solving equation 14 for D . This process is
best illustrated by example. A random number of 0.78687 is
generated for storm depth and results in a depth of 1.33 inches
using equation 13. Another random number of 0.040703 is gen-
erated for storm duration and results in a dusation of 1.01 houss
using equation 14. The average rainfall intensity for this storm
thus is 1.33 divided by 1.01 or 1.32 inches per hour.

{1-

‘1 _Fl "?5)]!! W]W."}

Regional Approach by County

Example 6: Regional Estimation of Storm Occurrence

PROBLEM: The storm interevent time for storms defined
by a 40-hour minimum interevent time in Randall County, Tex.

Example Applications 43

(fig. 3A). is desired. The storm interevent time is a compopent
of a design. The maps in this report can be used for estimation.

SOLUTION: The storm interevent time for a 40-hour
minimum interevent time is not a statistic provided in this
report. However, 24-hour and 48-hour minimum interevent
times bracket 40 hours. At the approxi center of Randall
County, the mean storm interevent time for the 24-hour
minimum interevent time is about 10.5 days (table 18), and that
for the 48-hour minimum interevent time is about 12.4 days
(table 18). Linear interpolation can be usad to estimate the mean
storm interevent time for the 40-hour minimum interevent time;
the result is about 11.8 days.

Example 7. Computation of the Storm-Captured
Percentage

PROBLEM: A local ordinance for a county in Texas
requires that a BMP capture a 1 5-inch storm and release this
storm over a 24-hour period. The county has a mean storm
depth of 0.750 inch (a randomly selected value from table 19).
An estimate of the percentage of storms that will be captured
under the ordinance is needed.

SOLUTION: The dimersionless storm depth frequency
curve using the kappa distribution (eq. 6; table 7) for a 24-hour
minimum interevent time in Texas is

T = 0570, L1115 [ (1-FHH SR
x(F) = o.sv9<>+_0_]359[. (57 . (15
where x(F) is the dimensionless multiplier (a frequency
factor) for nopexceedance probability F. The storm depth
distribution is the mean depth multiplied by the dimensionless
distribution or

P(F) = 0.750 x x(F). 16

where P(F) is the storm depth for nonexceedance probability
F. The left side of the equation is set to 1.5 inches, and the
storm percentage can be estimated by solving the resulting
equation for F . The equation is

- 1 _ P, 0
= -05790 +_(l):1l;’59[1 -5 m] an

The F satisfying the equality is 0.859. Thus, under the ordi-
nance, about 8 percent of all storms will be captured by the
BMP.

Example & Regional Estimation of the Empirical
Distribution of Storm Depth

PROBLEM: A BMP is to be built with a 36-hour draw-
down time in Randall County, Tex. (fig. 3A). The empirical dis-
tribution, specifically the 30th, 75th, S0th, 98th, and 95th per-
centiles of storm depth, are needad as partof the design process.

= Asquith and others (2006)

— Examples provide “tools” to
parameterize the empirical-
dimensionless-hyetographs.

— Page 43 explains how to
use Kappa quantile function
and L-moments to recover
duration (horizontal axis of
the empirical.hyetograph). .

—"Did not provide ‘code.’
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Appendix 4-2.1.

[=. not available)

L-moments of storm depth defined by 6-hour minimum interevent time for hourly rainfall stations in Texas.
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= Asquith (2007)
-~ — LMOMCO"package in R

— Provides the necessary ‘code’ to make such computations.

# R Code to zimulate Harris County Intensities (&-hour)
# Load the L-moment package from CRAN and attach as a library
library (lmomco )

# Cuantile Functiong for Depth and Duration.

# fAzquith and othsrs, 2006, Eqn= 13, and 14.
q_func<-function(f,pl,.p2,.p3,pd{{pl+(p2/p3)*(1-({(1-f"p4) /p4) "p3))}

# L-momesnts for sach station from Appendiz 4, Aaquith and othera, 2006

# Statiom 0BT, G-hour inter-event arriwval tims

lmdep<-vec2lmom (c(0.57882, 0.37118, 0.51392, 0.2775 ))

Imdur<-vec2lmom (c(6.3865, 3.1849, 0.43733, 0.2604 })

# got Kappa paramsters from L-moments

pardep<-lmomZpar { lmdep, type="kap" )

pardur<-lmomZ2par { Imdur , type="kap" )

# generate 2800 random probabilities

fdep<-runif (2600,0,1); fdur<-rumif (2500,0,1)

# generate depth= and durationz associated with probabilities
dep<-q_func(fdep,pardepfpara [1] ,pardeptpara [2] .pardep$para [2] ,pardepfparal4] )
dur<-q_func (fdur ,pardurfpara [1] ,pardur$para [Z] ,pardurfpara [2] ,pardurfparal4] )
# calculate intenaitisa

avg_intenaity<-dep/dur




= Resulting Plot,
—5000 ‘events’

Intensity (in‘hr)
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Comparisons. to Prior \Work

= Asquith and
Roussel (2004)

— L-moments
analysis.

— Product similar to
TP-40: HY-35

In cooperatien with the Texas Department of Transportation

Atlas of Depth-Duration Frequency
of Precipitation Annual
Maxima for Texas

scientific Investigations Report 20045041
(TxDOT Implementation Report 5-1301-01-1)

LS. Department of the Interior
L5, Gealogical Suney
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Include Global
-Maxima

Avg.
Intensities
from Depth
and Duration.
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(COMPANSCNOC)

Include Global
-Maxima

— Avg.
Intensities
from Depth
and Duration.

= |nclude TP-40
values.

= |nclude HY-35
o values.

|
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Empirical Percentiles
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= Empirical
‘Percentiles’
— Count fraction

above and below
line.

Fraction
establishes
percentile.

Line is an ad-hoc
.. model.

“Design”
.. Equation.is from"
S TXDOT manual
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= COH IDF Overlay.

= 2-yearline-is
about the 95%
empirical
percentile.
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: : _R’e_gults are consist_ent with prior work.
= Results are within the global envelope.

= Differences at higher duration - Texas
storms less intense if long.

= Rare (99th-percentile) estimates about the

Sdlne.
[——

“ = Median (50th-percentile).quite different.

T

w='Consequence of what simulations actually
represent.
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= Biggest assumption is independent depth
and duration.

— There Is evidence that these variables are
highly coupled, especially for longer.durations.
= Conditional dependence should be
examined.

— Importantifor\water quality issues.
-"_-—-"' ———




